First Principles’ Investigation of Electronic Properties of Hf, Ag, Cd, Zn, Ce, Nd, Sm-Modified Lead Zirconate Titanate

2016 ◽  
Vol 13 (10) ◽  
pp. 7661-7665
Author(s):  
R. A Hussein ◽  
M El-Okr ◽  
I. I Bashter ◽  
M Ibrahim

First principles investigations, including density functional theory (DFT) have been applied to calculate the electronic properties of A-site modified lead zirconate titanate (PZT). The theoretical explanation for the origin of fatigue in ferroelectric perovskite oxides was implemented to study the fatigue behavior. The explanation indicates that, the fatigue is related to the weakness of π bond between Ti 3d and O 2p states, caused by the occupancy of the Ti 3d state by electrons which released from oxygen vacancies. If a certain energy state of the additive element founded to be overlapped with the Ti 3d state at conduction band minima, then it will sharing the electrons released by oxygen vacancies with the Ti 3d state. Therefore, when the Ti 3d state become less occupied with electrons the π bond between the Ti 3d and O 2p states become more maintained and the composition is less susceptible to fatigue.

2019 ◽  
Vol 27 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Rageh K. Hussein ◽  
Ibrahim I. Bashter ◽  
Mohamed El-Okr ◽  
Medhat Ahmed Ibrahim

Abstract Density of states and geometrical structures of modified Lead zirconate titanate are investigated using density functional theory within local density approximation. The electronic properties and bond length variation have been studied in terms of electronic structure and bonding mechanism principles respectively. Hybridization between Ti 3d - O 2p states and ferroelectric distortion have been addressed as a theoretical approach, to rule the improvement of ferroelectric properties of Lead zirconate titanate. The analysis of Ga, Tl modified Lead zirconate titanate were found to diminish the hybridization between Ti 3d - O 2p states, the relaxed behavior lead to the reversal of the known ferroelectric distortion. Y, Ho, Yb and Lu modified Lead zirconate titanate compounds have a tendency to intense the ferroelectric stability, its exhibit higher hybridization between Ti 3d - O 2p states than pure Lead zirconate titanate, also the arrangement of the ions distortions is strongly the same as the more favoured ferroelectric states of Lead zirconate titanate.


1993 ◽  
Vol 310 ◽  
Author(s):  
In K. Yoo ◽  
Seshu B. Desu ◽  
Jimmy Xing

AbstractMany attempts have been made to reduce degradation properties of Lead Zirconate Titanate (PZT) thin film capacitors. Although each degradation property has been studied extensively for the sake of material improvement, it is desired that they be understood in a unified manner in order to reduce degradation properties simultaneously. This can be achieved if a common source(s) of degradations is identified and controlled. In the past it was noticed that oxygen vacancies play a key role in fatigue, leakage current, and electrical degradation/breakdown of PZT films. It is now known that space charges (oxygen vacancies, mainly) affect ageing, too. Therefore, a quantitative ageing mechanism is proposed based on oxygen vacancy migration under internal field generated by either remanent polarization or spontaneous polarization. Fatigue, leakage current, electrical degradation, and polarization reversal mechanisms are correlated with the ageing mechanism in order to establish guidelines for simultaneous degradation control of PZT thin film capacitors. In addition, the current pitfalls in the ferroelectric test circuit is discussed, which may cause false retention, imprint, and ageing.


2021 ◽  
pp. 2100219
Author(s):  
Itamar T. Neckel ◽  
Francisco M. C. da Silva ◽  
Eduardo B. Guedes ◽  
Carlos S. B. Dias ◽  
Marcio M. Soares ◽  
...  

2019 ◽  
Vol 28 (3) ◽  
pp. 034002 ◽  
Author(s):  
Manura Liyanage ◽  
Ronald Miller ◽  
RKND Rajapakse

2000 ◽  
Vol 15 (7) ◽  
pp. 1546-1550 ◽  
Author(s):  
Frank McNally ◽  
Jin Hyeok Kim ◽  
F. F. Lange

A liquid-precursor process was used to produce an epitaxial all-oxide ferroelectric memory device structure. The lanthanum strontium manganate–lead zirconate titanate–lanthanum strontium manganate (LSMO–PZT–LSMO) structure used for this device shows excellent polarization and fatigue behavior with a remnant polarization Pr of 42 µC/cm2 and a coercive field Ec of 68 keV. The polarization was found to only slightly degrade after over 1010 fatigue cycles. This behavior is contrasted with epitaxial PZT using a metal top electrode. In addition, the use of a top LSMO electrode was a sufficient barrier to Pb loss during heating to allow subsequent (or prolonged) heat treatments that would generally lead to Pb loss.


2012 ◽  
Vol 05 (03) ◽  
pp. 1250027 ◽  
Author(s):  
SOODKHET POJPRAPAI ◽  
JULIA GLAUM

The ferroelectric fatigue behavior of lead zirconate titanate was investigated under different temperatures (room temperature and 125°C). A bipolar electric field of ±1.5 kV/mm at a frequency of 50 Hz was applied to the samples up to 2 × 105 cycles. A markedly different fatigue rate was observed dependent on temperature. The fatigue degradation represented by the loss of polarization and strain increases with the number of cycles and is more pronounced in the case of the lower temperature. Brennan's model based on a logarithmic fatigue rate is applied to explain the temperature effect on fatigue behavior due to the pinning effect.


2002 ◽  
Vol 80 (9) ◽  
pp. 1625-1627 ◽  
Author(s):  
Shashank Priya ◽  
Hyeoung Woo Kim ◽  
Jungho Ryu ◽  
Kenji Uchino ◽  
Dwight Viehland

Sign in / Sign up

Export Citation Format

Share Document