A Study on Techniques of Underwater Optical Communication

2019 ◽  
Vol 16 (2) ◽  
pp. 525-528
Author(s):  
Jansi J. Rani ◽  
S. Anusuya ◽  
B. Vidhya ◽  
Benedict M. Tephila

In recent years, the higher data rate and a higher degree of accuracy in transmissions have been achieved through wireless communication technology. The underwater communication is one of the trending technologies in wireless communication. The underwater data transmission is carried out by the acoustic waves which produce vibrations of sounds during its transmission. These vibrations have disturbed the creatures present underwater and additionally it may cause some noise. The results of many recent researches have concluded that the vibrations produced by the acoustic waves cause the disturbances in the earth plates and due to which the natural calamities like tsunami, earthquakes etc., have been occurring. The underwater communication is mostly used for military applications and for the transmission of sensitive information within the shortest distance of a particular area. The use of acoustic waves produces a low data rate and increased time delay. In addition to that, these waves are unreliable and complex due to multipath propagations in water. The acoustic waves employ modulation techniques like FSK, PSK and OFDM for the data transmission and consume more energy and power. So lately, the transmission of data in underwater is carried out by using the optical waves. ON–OFF keying technique is most commonly used modulation technique with attractive features such as high data rate, less delay, low power consumption, energy saving, and better accuracy than the other techniques.

Author(s):  
Archana B. ◽  
T. P. Surekha

The growing interest towards wireless communication advancement with smart devices has provided the desired throughput of wireless communication mechanisms. But, attaining high-speed data packets amenities is the biggest issue in different multimedia applications. Recently, OFDM has come up with the useful features for wireless communication however it faces interference issues at carrier level (intercarrier interferences). To resolve these interference issues in OFDM, various existing mechanisms were utilized cyclic prefix, but it leads to redundancy in transmitted data. Also, the transmission of this redundant data can take some more power and bandwidth. All these limitations factors can be removed from a parallel cancellation mechanism. The integration of parallel cancellation and Convolution Viterbi encoding and decoding in MIMO-OFDMA will be an effective solution to have high data rate which also associations with the benefits of both the architectures of MIMO and OFDMA modulation approaches. This paper deals with this integrated mechanism for efficient resource allocation and power consumption. For performance analysis, MIMO-OFDMA system is analyzed with three different approaches likeMIMO-OFDM system without parallel cancellation (MIMO-OFDMA-WPC), MIMO-OFDMA System with parallel cancellation (MIMO-OFDMA-PC) and proposed IMO-OFDMA system with parallel cancellation and Convolution Viterbi encoding/decoding (pMIMO-OFDMA-PC &CVed) for 4x4 transmitter and receiver. Through performance analysis, it is found that the proposed system achieved better resource allocation (bandwidth) with high data rate by minimized BER rate and achieved least power consumption with least BER.


2021 ◽  
Author(s):  
Menaka D ◽  
Sabitha Gauni ◽  
Manimegalai C.T ◽  
Kalimuthu K

Abstract Communication in underwater is a growing research topic that plays a big role in forecasting accurate weather conditions. In which Acoustic communication is the upcoming technology well qualified for its long-distance underwater communication with certain restrictions like low data rate and high latency. To overcome this constrain wireless optical communication are preferred for high data transmission and less delay. The attempts are made to analyze the performance of the turbid and coastal water conditions.To improve the underwater communication model,a hybrid model is proposed for the applications like weather forecasts, military equipment, and missing debris.


Author(s):  
Osama Zwaid Alsulami ◽  
Amal A. Alahmadi ◽  
Sarah O. M. Saeed ◽  
Sanaa Hamid Mohamed ◽  
T. E. H. El-Gorashi ◽  
...  

Optical wireless communication (OWC) is a promising technology that can provide high data rates while supporting multiple users. The optical wireless (OW) physical layer has been researched extensively, however, less work was devoted to multiple access and how the OW front end is connected to the network. In this paper, an OWC system which employs a wavelength division multiple access (WDMA) scheme is studied, for the purpose of supporting multiple users. In addition, a cloud/fog architecture is proposed for the first time for OWC to provide processing capabilities. The cloud/fog-integrated architecture uses visible indoor light to create high data rate connections with potential mobile nodes. These OW nodes are further clustered and used as fog mini servers to provide processing services through the OW channel for other users. Additional fog-processing units are located in the room, the building, the campus and at the metro level. Further processing capabilities are provided by remote cloud sites. Two mixed-integer linear programming (MILP) models were proposed to numerically study networking and processing in OW systems. The first MILP model was developed and used to optimize resource allocation in the indoor OWC systems, in particular, the allocation of access points (APs) and wavelengths to users, while the second MILP model was developed to optimize the placement of processing tasks in the different fog and cloud nodes available. The optimization of tasks placement in the cloud/fog-integrated architecture was analysed using the MILP models. Multiple scenarios were considered where the mobile node locations were varied in the room and the amount of processing and data rate requested by each OW node was varied. The results help to identify the optimum colour and AP to use for communication for a given mobile node location and OWC system configuration, the optimum location to place processing and the impact of the network architecture. This article is part of the theme issue ‘Optical wireless communication’.


Sign in / Sign up

Export Citation Format

Share Document