Invasive Ductal Carcinoma Detection in Histopathology Images Using Machine Learning Techniques Without Deploying Feature Extraction

2020 ◽  
Vol 17 (6) ◽  
pp. 2589-2595
Author(s):  
Isha Gupta ◽  
Sheifali Gupta ◽  
Swati Singh

Breast cancer is one of the common malignant diseases in female all over the world. Microscopic investigation of tissues in breast is essential for analysis of breast cancer. For detection of breast cancer, pathologist uses various magnificent stages for obtaining accurate diagnosis of biopsy images which is time consuming. Development in digital imaging techniques has helped in assessment of pathology images using machine learning and computerized methods which could computerize a few of the pathology stages in the diagnosis of breast cancer. This kind of automation can be helpful in achieving quick and exact results reducing the observers’ inconsistency, thus increasing the accuracy. In this work, a new method is proposed to categorize breast cancer histopathology images. The objective is to evaluate the robustness and accuracy of a classification system based on machine learning, to automatically identify invasive tumor on digitized images without extracting the features. Here, a new method is presented that employs machine learning classifiers for classification of invasive tumor on whole slide images. The accuracy of different classifiers varies from 80% to 85%, leaving scope for improvement. The aim is to gather different researchers in both machine learning and medical field to proceed toward this Computer Aided Diagnosis (CAD) system for classification of invasive ductal carcinoma (IDC).

2009 ◽  
Vol 27 (30) ◽  
pp. 4939-4947 ◽  
Author(s):  
Heather A. Jones ◽  
Ninja Antonini ◽  
Augustinus A.M. Hart ◽  
Johannes L. Peterse ◽  
Jean-Claude Horiot ◽  
...  

Purpose To investigate the long-term impact of pathologic characteristics and an extra boost dose of 16 Gy on local relapse, for stage I and II invasive breast cancer patients treated with breast conserving therapy (BCT). Patients and Methods In the European Organisation for Research and Treatment of Cancer boost versus no boost trial, after whole breast irradiation, patients with microscopically complete excision of invasive tumor, were randomly assigned to receive or not an extra boost dose of 16 Gy. For a subset of 1,616 patients central pathology review was performed. Results The 10-year cumulative risk of local breast cancer relapse as a first event was not significantly influenced if the margin was scored negative, close or positive for invasive tumor or ductal carcinoma in situ according to central pathology review (log-rank P = .45 and P = .57, respectively). In multivariate analysis, high-grade invasive ductal carcinoma was associated with an increased risk of local relapse (P = .026; hazard ratio [HR], 1.67), as was age younger than 50 years (P < .0001; HR, 2.38). The boost dose of 16 Gy significantly reduced the local relapse rate (P = .0006; HR, 0.47). For patients younger than 50 years old and in patients with high grade invasive ductal carcinoma, the boost dose reduced the local relapse from 19.4% to 11.4% (P = .0046; HR, 0.51) and from 18.9% to 8.6% (P = .01; HR, 0.42), respectively. Conclusion Young age and high-grade invasive ductal cancer were the most important risk factors for local relapse, while margin status had no significant influence. A boost dose of 16 Gy significantly reduced the negative effects of both young age and high-grade invasive cancer.


Breast Cancer ◽  
2003 ◽  
Vol 10 (2) ◽  
pp. 149-152 ◽  
Author(s):  
Shinichi Tsutsui ◽  
Shinji Ohno ◽  
Shigeru Murakami ◽  
Akemi Kataoka ◽  
Junko Kinoshita ◽  
...  

2012 ◽  
Vol 03 (06) ◽  
pp. 1020-1028 ◽  
Author(s):  
Edén A. Alanís-Reyes ◽  
José L. Hernández-Cruz ◽  
Jesús S. Cepeda ◽  
Camila Castro ◽  
Hugo Terashima-Marín ◽  
...  

2020 ◽  
pp. 1-16
Author(s):  
Deepika Kumar ◽  
Usha Batra

Breast cancer positions as the most well-known threat and the main source of malignant growth-related morbidity and mortality throughout the world. It is apical of all new cancer incidences analyzed among females. However, Machine learning algorithms have given rise to progress across different domains. There are various diagnostic methods available for cancer detection. However, cancer detection through histopathological images is considered to be more accurate. In this research, we have proposed the Stacked Generalized Ensemble (SGE) approach for breast cancer classification into Invasive Ductal Carcinoma+ and Invasive Ductal Carcinoma-. SGE is inspired by the stacking model which utilizes output predictions. Here, SGE uses six deep learning models as level-0 learner models or sub-models and Logistic regression is used as Level – 1 learner or meta – learner model. Invasive Ductal Carcinoma dataset for histopathology images is used for experimentation. The results of the proposed methodology have been compared and analyzed with existing machine learning and deep learning methods. The results demonstrate that the proposed methodology performed exponentially good in image classification in terms of accuracy, precision, recall, and F1 measure.


Author(s):  
Ahmed Osmanović ◽  
Sabina Halilović ◽  
Layla Abdel Ilah ◽  
Adnan Fojnica ◽  
Zehra Gromilić

2019 ◽  
Author(s):  
Shikha Roy ◽  
Rakesh Kumar ◽  
Vaibhav Mittal ◽  
Dinesh Gupta

AbstractEarly detection of breast cancer and its correct stage determination are important for prognosis and rendering appropriate personalized clinical treatment to breast cancer patients. However, despite considerable efforts and progress, there is a need to identify the specific genomic factors responsible for, or accompanying Invasive Ductal Carcinoma (IDC) progression stages, which can aid the determination of the correct cancer stages. We have developed two-class machine-learning classification models to differentiate the early and late stages of invasive ductal carcinoma. The prediction models are trained with RNA-seq gene expression profiles representing different IDC stages of 610 patients, obtained from The Cancer Genome Atlas (TCGA). Different supervised learning algorithms were trained and evaluated with an enriched model learning, facilitated by different feature selection methods. We also developed a machine-learning classifier trained on the same datasets with training sets reduced data corresponding to IDC driver genes. Based on these two classifiers, we have developed a web-server Duct-BRCA-CSP to predict early stage from late stages of IDC based on input RNA-seq gene expression profiles. The analysis conducted by us also enables deeper insights into the stage-dependent molecular events accompanying breast ductal carcinoma progression. The server is publicly available at http://bioinfo.icgeb.res.in/duct-BRCA-CSP.


Sign in / Sign up

Export Citation Format

Share Document