A Health Informatics Study Based on Prognostic Value of Extravascular Lung Water Index Monitoring by Minimally Invasive Quantitative Measurement in Elderly Patients with Septic Shock

2018 ◽  
Vol 8 (2) ◽  
pp. 337-343
Author(s):  
Zhou Li ◽  
Yong Jian Wang
Critical Care ◽  
2008 ◽  
Vol 12 (Suppl 2) ◽  
pp. P105
Author(s):  
J Mallat ◽  
P Salaun ◽  
D Thevenin ◽  
L Tronchon ◽  
C Patoir ◽  
...  

2010 ◽  
Vol 37 (1) ◽  
pp. 124-131 ◽  
Author(s):  
Riccardo Lubrano ◽  
Corrado Cecchetti ◽  
Marco Elli ◽  
Caterina Tomasello ◽  
Giuliana Guido ◽  
...  

Author(s):  
Chunli Yang ◽  
Chunli Yang ◽  
Yang Xiaogang ◽  
Zhaohui He

Background: Phosgene (carbonyl dichloride) gas is an indispensable chemical intermediate used in numerous industrial processes. Acute lung injury (ALI) caused by accidental inhalation exposure to phosgene is characterized pulmonary edema being phenotypically manifested after an asymptomatic or more precisely phrased “clinical occult” period. Opposite to common clinical practice, protective treatment should be given preference to curative treatment. Treatment initiated already during the asymptomatic phase shortly after exposure requires prognostic endpoints preceding the lung edema for triage and re-triage. Treatment strategies need to be personalized and exposure-dose related. The objective of this post-hoc analysis of published data is to assess prognostic value of ventilation dead-space (Vd/Vt) and extravascular lung water index (EVLWI) to guide treatment by protective PEEP supplemented by venovenous (vv) ECMO. Methods: This paper aims to compare the overarching published framework from systematic toxicological research of phosgene in animal bioassays with the clinical evidence from four accidentally phosgenepoisoned workers admitted to hospital with life-threatening lung edema. Treatment focused on a combination of protective PEEP and ECMO to reverse phosgene-induced deterioration in lung mechanics by personalized mechanical ventilation. Endpoints selected for titration PEEP focused on endpoints indicative of decoupling cardiopulmonary and vascular functions. To better understand any cardiogenic and vascular disturbances, titration endpoints included calculated ventilation dead-space (Vd/Vt), measured extravascular lung water index (EVLWI), arterial blood gases and acid-base status, systemic vascular resistance index (SVRI), and cardiac index (CI). EVLWI and APACHE II criteria guided the course of treatment in adjusting plateau pressure (Pplat), positive end-expiratory pressure (PEEP), and driving pressure (ΔP). Results: Remarkable equivalence of human data and those from controlled inhalation studies with phosgene on rats and dogs was found. The endpoint of choice guiding PEEP ventilation and implementation of ECMO was EVLWI. This maker of lung edema precisely reflects the increased wet lung weights in animals. Conclusions: ECMO-supplemented PEEP not only mitigates hypoxemia at conditions of severe ARDS and it also provides a means to reduce driving and plateau pressures minimizing ventilatorassociated lung injury.


2020 ◽  
Author(s):  
Sebastian Rasch ◽  
Paul Schmidle ◽  
Senguel Sancak ◽  
Alexander Herner ◽  
Christina Huberle ◽  
...  

OBJECTIVE: Nearly 5 % of the patients with COVID-19 develop an acute respiratory distress syndrome (ARDS). Extravascular lung water index (EVLWI) is a marker of pulmonary oedema which is associated with mortality in ARDS. In this study we evaluate whether EVLWI is higher in patients with COVID-19 associated ARDS as compared to controls and whether EVLWI has the potential to monitor disease progression. METHODS: From the day of intubation, EVLWI, cardiac function were monitored by transpulmonary thermodilution in n=25 patients with COVID-19 and compared to a control group of 49 non-COVID-19 ARDS-patients. RESULTS: EVLWI in COVID-19-patients was noticeably elevated and significantly higher than in the control group (17 (11-38) vs. 11 (6-26) mL/kg; p<0.001). High pulmonary vascular permeability index values (2.9 (1.0-5.2) versus 1.9 (1.0-5.2); p=0.003) suggest inflammatory oedema. By contrast, the cardiac parameters SVI, GEF and GEDVI were comparable. High EVLWI values were associated with viral persistence, prolonged intensive care treatment and mortality (23.2±6.7% vs. 30.3±6.0%, p=0.025). CONCLUSIONS: Compared to the control group, COVID-19 results in markedly elevated EVLWI-values in patients with ARDS. EVLWI reflects a non-cardiogenic pulmonary oedema in COVID-19 associated ARDS and could serve as parameter to monitor ARDS progression.


Sign in / Sign up

Export Citation Format

Share Document