Novel Nanohybrids Derived from the Attachment of FePt Nanoparticles on Carbon Nanotubes

2008 ◽  
Vol 8 (11) ◽  
pp. 5942-5951 ◽  
Author(s):  
Theodoros Tsoufis ◽  
Aphrodite Tomou ◽  
Dimitrios Gournis ◽  
Alexios P. Douvalis ◽  
Ioannis Panagiotopoulos ◽  
...  

Multiwalled carbon nanotubes (MWCNTs) were used as nanotemplates for the dispersion and stabilization of FePt nanoparticles (NPs). Pre-formed capped FePt NPs were connected to the MWCNTs external surface via covalent binding through organic linkers. Free FePt NPs and MWCNTs-FePt hybrids were annealed in vacuum at 700 °C in order to achieve the L10 ordering of the FePt phase. Both as prepared and annealed samples were characterized and studied using a combination of experimental techniques, such as Raman and Mössbauer spectroscopies, powder X-ray Diffraction (XRD), magnetization and transmittion electron microscopy (TEM) measurements. TEM measurements of the hybrid sample before annealing show that a fine dispersion of NPs along the MWCNTs surface is achieved, while a certain amount of free particles attached to each other in well connected dense assemblies of periodical or non-periodical particle arrangements is also observed. XRD measurements reveal that the FePt phase has the face-centered cubic (fcc) disordered crystal structure in the as prepared samples, which is transformed to the face-centered tetragonal (fct) L10 ordered crystal structure after annealing. An increase in the average particle size is observed after annealing, which is higher for the free NPs sample. Superparamagnetic phenomena due to the small FePt particle size are observed in the Mössbauer spectra of the as prepared samples. Mössbauer and magnetization measurements of the MWCNTs-FePt hybrids sample reveal that the part of the FePt particles attached to the MWCNTs surface shows superparamagnetic phenomena at RT even after the annealing process. The hard magnetic L10 phase characteristics are evident in the magnetization measurements of both samples after annealing, with the coercivity of the hybrid sample over-scaling that of the free NPs sample by a factor of 1.25.

2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


1992 ◽  
Vol 7 (2) ◽  
pp. 99-102 ◽  
Author(s):  
N.R. Serebryanaya

AbstractPhase transitions were found with use of an in situX-ray anvil-type of apparatus with a boron annulus at pressures up to 12 GPa. The disordering of vacancies in the In sub-structure, or α→βtransition, was found in In2Te3at p > 1.9 GPa. The next transformation from the β-form into the Bi2Te3type of structure was observed in both sesquitellurides at 2.0 GPa and 5.0 GPa for In2TGe3and Ga2Te3respectively. The In2Te3metastable phase of the Bi2Te3resulted from heating up to 200° C at p > 4.0 GPa, and it remained in a normal condition on release of the pressure. The X-ray powder diffraction data of pressure-induced phases, volume changes and bulk modulus of both sesquitellurides are given. The compressibility anisotropy of the layer pressure-induced phase was observed. The mechanism of the crystal structure transformation from the face-centered cubic structure into the Bi2Te3type is proposed to be due to the displacement of atoms from the space diagonal of the cube [111] into [112]-cubic direction and the rhombohedral distortion of the angle between these directions.


1961 ◽  
Vol 39 (2) ◽  
pp. 297-317 ◽  
Author(s):  
Osvald Knop ◽  
Mohammad Anwar Ibrahim

The face-centered cubic phase π(Fe,Co,Ni,S) has been shown to exist, at room temperature, within wide composition limits in or close to the M9S8 section of the quaternary system Fe–Co–Ni–S. The M:S ratio of the binary phase π (Co,S) is 9:8 with very narrow homogeneity ranges on both sides of Co9S8, but in π (Fe,Co,Ni,S) the ratio is somewhat higher and appears to increase with decreasing cobalt content. Stoichiometric Co9S8 probably contains a small number of vacancies in both sublattices. It is quite lilcely that the sulphur sublattice is nearly fully occupied and that departures from stoichiometry are caused by the varying degree of occupancy of the metal sublattice.The crystal structure, which was proposed for Co9S8 and for the mineral pentlandite by Lindqvist etal., has been confirmed for these two substances and for π (Fe,Co,Ni,S) in general by X-ray and neutron powder diffraction. The present evidence does not support the crystal structure suggested for natural pentlandite by Eliseev; Eliseev's model does not, in fact, account for the diffraction data of any of the substances examined in this work.Replacement of cobalt in π (Co,S) by iron or nickel or both results in an expansion of the unit cell, the maximum increase in a(π) amounting to about 3%. Cobalt in π (Co,S) cannot be replaced completely by iron or by nickel in samples prepared by dry synthesis, but if the substitution is simultaneous, the π structure will be preserved over a considerable range of compositions even on total replacement. The stability limits of π (Fe,Ni,S) have been found somewhat wider than those stated by Lundqvist.In π phases with the compositions Co8MS8 the metal atoms can conceivably be present in ordered sublattices. This possibility was explored by neutron diffraction in slowly cooled Co8NiS8. Unlike in spinels, where nickel shows a strong preference for octahedral co-ordination, the cobalt and nickel atoms were found to be distributed at random.


2021 ◽  
Vol 236 (3-4) ◽  
pp. 71-80
Author(s):  
Sivaprasad Ghanta ◽  
Anustoop Das ◽  
Rajat Kamboj ◽  
Partha P. Jana

Abstract The T phase in the Mn–Ni–Zn system was obtained as a product of high-temperature solid-state syntheses from the loaded composition of MnxNi2−xZn11 (x = 0.2–1.5)/MnxNi15.38−xZn84.62 (x = 1.54–11.54). The crystal structure of the T phase has been explored by means of X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The structures were solved in the face-centered cubic space group F 4 ‾ 3 m $F‾{4}3m$ (216) and contain 409–410 atoms/unit cell. The lattice constants were found to be a = 18.1727(2) and 18.1954(1) Å for crystals C1 and C2, respectively. The crystal structure denoted the T phase is a (2aγ)3-superstructure of the ordinary cubic γ-brass-type phase. The phase is isostructural to (Fe, Ni)Zn6.5. A “cluster” description has been used to visualize the crystal structure of the title phase. The structures have been constructed by the five distinct clusters and they are situated about the high symmetry sites of the face-centered cubic lattice. The T phase is stabilized at a valance electron concentration of 1.78, which is slightly higher than those expected for typical γ-brass Hume‐Rothery compounds.


2016 ◽  
Vol 49 (4) ◽  
pp. 1177-1181 ◽  
Author(s):  
X.-F. Gu ◽  
T. Furuhara

The composition, crystal structure and precipitation crystallography of a newly found precipitate are characterized by Cs-corrected scanning transmission electron microscopy. The composition of the plate-like precipitate could be expressed as MgxAl2−xGd (x= 0.38), and its crystal structure is the same as the face-centered cubic type Laves phases Mg2Gd and Al2Gd, with a lattice parameter of 7.92 Å (space group No. 227, Fd\overline 3m). The orientation relationship between the matrix and precipitate is found to be (0001)m//(111)pand [10\overline 10]m//[1\overline 10]p, and the habit plane is parallel to the (0001)m//(111)pplane. In addition, this preferred crystallography of phase transformation is well explained on the basis of the atomic matching at the interface.


2016 ◽  
Vol 72 (11) ◽  
pp. 1565-1568
Author(s):  
Jaskarun Pabla ◽  
Yuri Janssen ◽  
Jack W. Simonson

Single crystals of a new multinary chromium carbide, La21Cr8−2aAlbGe7−bC12(henicosalanthanum octachromium aluminium hexagermanium dodecacarbide), were grown from an La-rich self flux and were characterized by single-crystal X-ray diffraction. The face-centered cubic crystal structure is composed of isolated and geometrically frustrated regular Cr tetrahedra that are co-centered within regular C octahedra. These mutually separated Cr4−aC6clusters are distributed throughout a three-dimensional framework of Al, Ge, and La. The title compound is isotypic with La21−δMn8X7C12andR21Fe8X7C12(R= La, Ce, Pr;X= Al, Bi, Ge, Sn, Sb, Te) and represents the first example of a Cr-based compound with this structure-type.


2001 ◽  
Vol 704 ◽  
Author(s):  
C. W. White ◽  
S. P. Withrow ◽  
J. D. Budai ◽  
L. A. Boatner ◽  
K. D. Sorge ◽  
...  

AbstractOriented ferromagnetic FePt nanoparticles with the face-centered tetragonal L10 structure were produced in Al2O3 single crystal hosts by ion implantation and annealing. Both the orientation and particle-size of the FePt particles depend strongly on the implantation conditions. The magnetic coercivities are extremely high, reaching values in excess of 20 kOe for Pt concentrations of ∼45% in the FePt alloy. Ferromagnetic FePt nanoparticles were also produced in amorphous SiO2 by ion implantation and annealing.


2004 ◽  
Vol 449-452 ◽  
pp. 1229-1232
Author(s):  
Won Young Choi ◽  
Jeong Won Kang ◽  
Ho Jung Hwang

We have investigated the structures of copper nanowires encapsulated in carbon nanotubes using a structural optimization process applied to a steepest descent method. Results show that the stable morphology of the cylindrical ultra-thin copper nanowires in carbon nanotubes is multi-shell packs consisted of coaxial cylindrical shells. As the diameters of copper nanotubes increases, the encapsulated copper nanowires have the face centered cubic structure as the bulk. The circular rolling of a triangular network can explain the structures of ultra-thin multi-shell copper nanowires encapsulated in carbon nanotubes.


Author(s):  
F. Monchoux ◽  
A. Rocher ◽  
J.L. Martin

Interphase sliding is an important phenomenon of high temperature plasticity. In order to study the microstructural changes associated with it, as well as its influence on the strain rate dependence on stress and temperature, plane boundaries were obtained by welding together two polycrystals of Cu-Zn alloys having the face centered cubic and body centered cubic structures respectively following the procedure described in (1). These specimens were then deformed in shear along the interface on a creep machine (2) at the same temperature as that of the diffusion treatment so as to avoid any precipitation. The present paper reports observations by conventional and high voltage electron microscopy of the microstructure of both phases, in the vicinity of the phase boundary, after different creep tests corresponding to various deformation conditions.Foils were cut by spark machining out of the bulk samples, 0.2 mm thick. They were then electropolished down to 0.1 mm, after which a hole with thin edges was made in an area including the boundary


Sign in / Sign up

Export Citation Format

Share Document