scholarly journals Characterization of crystal structure and precipitation crystallography of a new MgxAl2−xGd phase in an Mg97Al1Gd2alloy

2016 ◽  
Vol 49 (4) ◽  
pp. 1177-1181 ◽  
Author(s):  
X.-F. Gu ◽  
T. Furuhara

The composition, crystal structure and precipitation crystallography of a newly found precipitate are characterized by Cs-corrected scanning transmission electron microscopy. The composition of the plate-like precipitate could be expressed as MgxAl2−xGd (x= 0.38), and its crystal structure is the same as the face-centered cubic type Laves phases Mg2Gd and Al2Gd, with a lattice parameter of 7.92 Å (space group No. 227, Fd\overline 3m). The orientation relationship between the matrix and precipitate is found to be (0001)m//(111)pand [10\overline 10]m//[1\overline 10]p, and the habit plane is parallel to the (0001)m//(111)pplane. In addition, this preferred crystallography of phase transformation is well explained on the basis of the atomic matching at the interface.

2016 ◽  
Vol 22 (6) ◽  
pp. 1244-1250 ◽  
Author(s):  
Jingxu Zheng ◽  
Zhongyuan Luo ◽  
Lida Tan ◽  
Bin Chen

AbstractIn the present study, nano-sized cuboid-shaped particles in Mg–Nd–Y are studied by means of Cs-corrected atomic-scale high-angle annular dark-field scanning transmission electron microscopy. The structure of the cuboid-shaped phase is identified to be yttrium (major component) and neodymium atoms in face-centered cubic arrangement without the participation of Mg. The lattice parameter a=5.15 Å. During isothermal aging at 225°C, Mg3(Nd,Y) precipitates adhere to surface (100) planes of the cuboid-shaped particles with the orientation relationship: $[100]_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} \,/\,\,/\,[100]_{{{\rm Cuboid}}} $ and $[310]_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} \,/\,\,/\,[012]_{{{\rm Cuboid}}} $ . The fully coherent interfaces between the precipitates and the cuboid-shaped phases are reconstructed and categorized into two types: $(400)_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} $ interface and $(200)_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} $ interface.


2013 ◽  
Vol 738-739 ◽  
pp. 113-117 ◽  
Author(s):  
Hui Shi ◽  
Jan Frenzel ◽  
Dominique Schryvers

Nb-rich precipitates in the matrix of as-cast and annealed Ni45.5Ti45.5Nb9 alloys are investigated by scanning and scanning transmission electron microscopy, including slice-and-view and geometric phase analysis (GPA). The Nb-rich bcc nano-precipitates in the as-cast alloy have a 10% lattice parameter difference with the B2 matrix and reveal compensating interface dislocations. The 3D reconstruction of the configuration of small Nb-rich precipitates in the annealed alloy reveals a wall-like distribution of precipitates, which may increase the thermal hysteresis of the material.


1985 ◽  
Vol 62 ◽  
Author(s):  
J. Tafto ◽  
G. Rajeswaran ◽  
T. Saulys

ABSTRACTTICx films prepared by reactive sputtering using a Ti target and different methane partial pressures were characterized by analytical transmission electron microscopy. The films are polycrystalline, and the plasmon energy increases considerably with increasing carbon content. Combination of the information obtained from electron energy loss plasmon and core loss spectra, and electron diffraction indicates that x in TiCx increases linearly with methane partial pressure. We find that the face centered cubic TIC phase spans the composition from TiC0.2 to TiC1.0 and when x<l we have a mixture of TiC1.0 and amorphous C.


2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


1997 ◽  
Vol 3 (S2) ◽  
pp. 413-414
Author(s):  
E.M. Hunt ◽  
J.M. Hampikian ◽  
N.D. Evans

Ion implantation can be used to alter the optical response of insulators through the formation of embedded nano-sized particles. Single crystal alumina has been implanted at ambient temperature with 50 keV Ca+ to a fluence of 5 x 1016 ions/cm2. Ion channeling, Knoop microhardness measurements, and transmission electron microscopy (TEM) indicate that the alumina surface layer was amorphized by the implant. TEM also revealed nano-sized crystals ≈7 - 8 nm in diameter as seen in Figure 1. These nanocrystals are randomly oriented, and exhibit a face-centered cubic structure (FCC) with a lattice parameter of 0.409 nm ± 0.002 nm. The similarity between this crystallography and that of pure aluminum (which is FCC with a lattice parameter of 0.404 nm) suggests that they are metallic aluminum nanocrystals with a slightly dilated lattice parameter, possibly due to the incorporation of a small amount of calcium.Energy-filtered transmission electron microscopy (EFTEM) provides an avenue by which to confirm the metallic nature of the aluminum involved in the nanocrystals.


2010 ◽  
Vol 97-101 ◽  
pp. 19-22 ◽  
Author(s):  
Yu Shiang Wu ◽  
Wen Ku Chang ◽  
Min Jou

Zinc stannate Zn2SnO4 (ZTO) nanoparticles were synthesized via a hydrothermal process utilizing sodium carbonate (Na2CO3) as a weak basic mineralizer. The samples were hydrothermally treated at 150, 200, and 250oC for 48 h. The X-ray diffraction (XRD) patterns show that the highly-crystalline ZTO nanostructure could be formed in a well-dispersed manner for the 250°C sample at a particle size of less than 50 nm. As determined from transmission electron microscopy (TEM) results, ZTO nanoparticles are face-centered cubic single crystals agglomerated together. The Raman spectra results showed that the ZTO nanocrystals have a spinel structure. Furthermore, photocatalytic activity was tested with methylene blue (MB) by UV irradiation. The ZTO synthesized by the 2 M Na2CO3 mineralizer at 250oC demonstrated excellent photocatalytic activity. The ZTO treated three different ways had three distinct UV-Visible absorption curves, which directly influences their corresponding photocatalytic activity.


2008 ◽  
Vol 8 (11) ◽  
pp. 5942-5951 ◽  
Author(s):  
Theodoros Tsoufis ◽  
Aphrodite Tomou ◽  
Dimitrios Gournis ◽  
Alexios P. Douvalis ◽  
Ioannis Panagiotopoulos ◽  
...  

Multiwalled carbon nanotubes (MWCNTs) were used as nanotemplates for the dispersion and stabilization of FePt nanoparticles (NPs). Pre-formed capped FePt NPs were connected to the MWCNTs external surface via covalent binding through organic linkers. Free FePt NPs and MWCNTs-FePt hybrids were annealed in vacuum at 700 °C in order to achieve the L10 ordering of the FePt phase. Both as prepared and annealed samples were characterized and studied using a combination of experimental techniques, such as Raman and Mössbauer spectroscopies, powder X-ray Diffraction (XRD), magnetization and transmittion electron microscopy (TEM) measurements. TEM measurements of the hybrid sample before annealing show that a fine dispersion of NPs along the MWCNTs surface is achieved, while a certain amount of free particles attached to each other in well connected dense assemblies of periodical or non-periodical particle arrangements is also observed. XRD measurements reveal that the FePt phase has the face-centered cubic (fcc) disordered crystal structure in the as prepared samples, which is transformed to the face-centered tetragonal (fct) L10 ordered crystal structure after annealing. An increase in the average particle size is observed after annealing, which is higher for the free NPs sample. Superparamagnetic phenomena due to the small FePt particle size are observed in the Mössbauer spectra of the as prepared samples. Mössbauer and magnetization measurements of the MWCNTs-FePt hybrids sample reveal that the part of the FePt particles attached to the MWCNTs surface shows superparamagnetic phenomena at RT even after the annealing process. The hard magnetic L10 phase characteristics are evident in the magnetization measurements of both samples after annealing, with the coercivity of the hybrid sample over-scaling that of the free NPs sample by a factor of 1.25.


2013 ◽  
Vol 8 (4) ◽  
pp. 155892501300800 ◽  
Author(s):  
Dawei Gao ◽  
Lili Wang ◽  
Xin Xia ◽  
Hui Qiao ◽  
Yibing Cai ◽  
...  

Two polymer solutions of polyacrylonitrile, polyvinyl pyrrolidone, and Ni(CH3COOH)2 in dimethylformamide were electrospun into ternary composite nanofibers, followed by stabilization and carbonization processes to obtain porous carbon/nickel composite nanofibers with diameters of 100–200 nm. The study revealed that carbon/nickel composite nanofibers were successfully prepared, which allowed nickel particles with diameters of 20–70 nm to be uniformly distributed in the carbon nanofibers. It was also observed that the fibrous structures with particles embedded formed and the fibers broke into shorter fibers after sintering. X-ray diffraction indicated that embedded particles crystallized with the face centered cubic structure. The Brunauer-Emmett-Teller analysis revealed that carbon/nickel composite nanofibers with meso-pores possessed larger specific surface area than that of carbon nanofibers. The specific capacitance of the composite nanofiber electrode was as high as 103.8 F/g and showed stable cyclicity (73.8%).


1992 ◽  
Vol 7 (2) ◽  
pp. 99-102 ◽  
Author(s):  
N.R. Serebryanaya

AbstractPhase transitions were found with use of an in situX-ray anvil-type of apparatus with a boron annulus at pressures up to 12 GPa. The disordering of vacancies in the In sub-structure, or α→βtransition, was found in In2Te3at p > 1.9 GPa. The next transformation from the β-form into the Bi2Te3type of structure was observed in both sesquitellurides at 2.0 GPa and 5.0 GPa for In2TGe3and Ga2Te3respectively. The In2Te3metastable phase of the Bi2Te3resulted from heating up to 200° C at p > 4.0 GPa, and it remained in a normal condition on release of the pressure. The X-ray powder diffraction data of pressure-induced phases, volume changes and bulk modulus of both sesquitellurides are given. The compressibility anisotropy of the layer pressure-induced phase was observed. The mechanism of the crystal structure transformation from the face-centered cubic structure into the Bi2Te3type is proposed to be due to the displacement of atoms from the space diagonal of the cube [111] into [112]-cubic direction and the rhombohedral distortion of the angle between these directions.


Sign in / Sign up

Export Citation Format

Share Document