Morphology and Vulcanizate Properties of Ethylene-Propylene-Diene Rubber/Styrene-Butadiene Rubber Blends

2010 ◽  
Vol 10 (5) ◽  
pp. 3720-3722 ◽  
Author(s):  
Gayoung Park ◽  
Yun Hee Kim ◽  
Dong Soo Kim ◽  
Young Chun Ko
1970 ◽  
Vol 43 (6) ◽  
pp. 1332-1339 ◽  
Author(s):  
J. K. Clark ◽  
R. A. Scott

Abstract Dissolution of sulfur-cured, carbon black-loaded copolymers and their blends with cis-1,4-polybutadiene (PBD) are brought about by boiling with o-dichlorobenzene which contains a small amount of 2,2′-dibenzamidodiphenyl disulfide. The resulting slurries are subjected to a sequence of separations which include high-speed centrifugation to remove solids, and solvent precipitation followed by filtration to isolate the precipitates. The precipitates are washed with solvent to remove soluble organic materials followed by carbon disulfide washing to dissolve the polymers. Cast films of the polymers are obtained by evaporating the carbon disulfide washings onto sodium chloride discs. The infrared spectra of the cast films of these preparations are very similar to those of their respective polymers prior to loading and curing. Calculations for relative concentrations of bound styrene and PBD micro-structures permit nominal identification of the kinds of styrene-butadiene rubber and the amounts of cis-1,4-PBD used in a cured rubber formulation. Absorption bands used are near 3.35 μ for cis-1,4-PBD, 6.65 μ for bound styrene, 10.35 μ for trans-1,4-PBD; and 11.0 μ for vinyl-1,2-PBD. Efforts are being made to improve the data by using a grating infrared instrument and also to extend the calibrations to include other rubber blends.


Sign in / Sign up

Export Citation Format

Share Document