compression set
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 57)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Vol 58 (4) ◽  
pp. 171-178
Author(s):  
Elangovan Kasi ◽  
Mohan Ramakrishnan

The usage of seals in several applications like aircraft engines is mostly made of Fluorocarbon (FKM) elastomer. They are coloured products that enable easier identification based on the applications. In such seals, fillers like carbon black cannot be added to reinforce and improvise the mechanical properties since carbon black does not make it possible to add colours. The properties after ageing are also very critical in sealing application, and they must also be improved. Also, Nanocomposites are the modern and growing trends in the field of polymers that show enormous changes in the properties of the polymers without affecting their basic properties. So, the need for improvisation of FKM seals and the concept of Nanocomposites can be merged to form FKM Nanocomposites with Nano clay and Nano silica as the fillers. The objective of this project is to improve the mechanical properties, better retention of properties after ageing and after fluid interaction of the FKM seals with the aid of Nanofillers. Different proportions of FKM nanocomposites were prepared using modified Nano Kaolin Clay & modified Montmorillonite clay (Cloisite grades). Various mechanical properties like tensile strength, tensile modulus, elongation at break, compression set and tear strength etc., were studied. The test results have shown good improvements while increasing the filler loading. This is helpful to manufacture seals of desired colours thereby avoiding the difficulties faced in the carbon black-filled FKM compounds.


2021 ◽  
Author(s):  
Peter Maher ◽  
Carl Nelson ◽  
David Dockweiler

Abstract Running two compression set tools in a single wellbore clean out string, typically a bypass tool and negative test packer, has been a significant industry challenge to operate reliably. The need for running these types of tools is generally driven by the need to perform a negative test on a liner top and achieve high flow rates necessary to hydraulically remove debris from the well. Combining these operations into a single run is an increasingly common method to reduce rig time and cost for the operator. Tools to perform this type of operation are generally available from many service providers, however difficulties and challenges arise when trying to manipulate two different tools in the same string that function by the same compression set method. These operations do have a history that is partially successful, however on a long term basis reliability is generally considered poor by most operators, as a failure to manipulate the tools correctly can result in a failed run and a trip out of the hole. This paper discusses the development and successful field deployment of a system of two compression set tools to address this specific challenge while improving reliability over existing solutions.


2021 ◽  
Vol 903 ◽  
pp. 127-133
Author(s):  
Vadim Myadelets ◽  
Vjaceslavs Lapkovskis ◽  
Andrey V. Kasperovich

In this paper, the influence of the modification method applied to ground vulcanizate (GV) on the properties of elastomeric compositions based on nitrile rubber is discussed. Modified GV has been mixed with the elastomeric composition, which is used for the manufacturing of oil-petroleum-resistant rubber products.The work takes into consideration two types of GV with different chemical nature. The first GV type is rubber crumb produced from end-of-life tires. The second GV type was obtained from rubber wastes based on nitrile rubber. Three methods of the modification are compared in the research: mechanical activation in a planetary ball mill, swelling in a Polyethylene glycol (PEG-400) medium, and the mechano-chemical transformation of GV with PEG-4000. It is shown that depending on the dosage addition of GV modified with PEG-4000 reduce the compression set up for (16.1±0.7%), the strength decreases only by 2.1–8.3%, and the elongation at break increases by 0.8–10.3% compared to rubber without additives.


2021 ◽  
Author(s):  
Rong Ding ◽  
Xinyu Yang ◽  
Liucheng Peng ◽  
Jing Xie ◽  
Chenwei Chen

Abstract The mycelium materials incubating Pleurotus ostreatus fungi based on different substrate compositions were developed, the main components of which were poplar sawdust and cottonseed hull in different proportions. The hyphae on the surface of the samples become dense from appearance due to the addition of cottonseed hull. The Fourier Transforms Infrared analysis revealed that the cellulose, hemicellulose and lignin in substrates of all samples were degraded in different degrees owing to utilization by hyphae growth. The morphology and mechanical properties of the mycelial materials changed as the substrate compositions varied. The difference of properties among all mycelium materials was mainly attributed to the growth of mycelium and different substrate compositions. And the mycelium material (the ratio of poplar sawdust to cottonseed hull was 1) exhibited highest strength and lowest compression set, indicating that its size recovery capability was best. In comparison, the substrate of this material was more favorable to the growth of the mycelium and it showed optimal comprehensive performance among all samples. The mycelium material showed good potentiality for packaging application.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3161
Author(s):  
Chloé Larrue ◽  
Véronique Bounor-Legaré ◽  
Philippe Cassagnau

The objective of this study was to replace elastomer crosslinking based on chemical covalent bonds by reversible systems under processing. One way is based on ionic bonds creation, which allows a physical crosslinking while keeping the process reversibility. However, due to the weak elasticity recovery of such a physical network after a long period of compression, the combination of both physical and chemical networks was studied. In that frame, an ethylene-propylene-diene terpolymer grafted with maleic anhydride (EPDM-g-MA) was crosslinked with metal salts and/or dicumyl peroxide (DCP). Thus, the influence of these two types of crosslinking networks and their combination were studied in detail in terms of compression set. The second part of this work was focused on the influence of different metallic salts (KOH, ZnAc2) and the sensitivity to the water of the physical crosslinking network. Finally, the combination of ionic and covalent network allowed combining the processability and better mechanical properties in terms of recovery elasticity. KAc proved to be the best ionic candidate to avoid water degradation of the ionic network and then to preserve the elasticity recovery properties under aging.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2996
Author(s):  
Rudeerat Suntako

Silica fume (SF) is a by-product from the production of silicon metal, which has a relatively high silica concentration. The surface modified silica fume (mSF) is treated with (3-mercaptopropyl) trimethoxysilane (MPTMS) as filler in ethylene propylene diene monomer (EPDM) foam. The FTIR spectra of mSF clearly indicated that MPTMS can be successfully bonded to the SF surface. The reinforcing efficiency of mSF-filled EPDM foam insulation indicated that the mechanical properties such as hardness, tensile strength, modulus, and compression set enhanced higher than in case of SF and calcium carbonate. While the cure characteristics such as the maximum torque (MH), the minimum torque (ML) and the differential torque (MH-ML) are increasing in proportion to increasing filler contents, mainly with mSF. For the cure behavior, the mSF-filled EPDM foam insulation showed the fastest cure time (tc90) and scorch time (ts2) due to reduced accelerator adsorption. Whereas, the calcium carbonate-filled EPDM foam insulation increased the cure time (tc90) and scorch time (ts2), therefore, it also prevents compound scorching. The results indicated that the mSF with MPTMS can be used as an alternative filler for EPDM foam insulation.


2021 ◽  
pp. 009524432110386
Author(s):  
Mousumi De Sarkar ◽  
Takashi Sunada ◽  
Atsunori Kondo

The curing system plays a vital role in designing rubber compounds for various industrial applications. Therefore, it is paramount to establish viable curing strategies for any new elastomer to explore its application potentials and commercial significance. Impacts of different curing regimes on the properties of a recently developed copolymer of chloroprene and acrylonitrile (acrylonitrile-chloroprene rubber, NCR) are reported here. Several primary accelerators (four from thiourea- and one from thiazolene product families) were used for curing the new rubber along with fixed loadings of zinc oxide (5 phr) and magnesium oxide (4 phr). Besides, curatives based on sulfur and peroxide were also evaluated. The influence of different curing systems on the rheological and physical properties of the copolymer was explored. It has been seen that the properties of the copolymer are considerably influenced by the different curing systems used. While ethylene thiourea (ETU) and propylene thiourea (PTU), as primary accelerators, provide the highest state of cure but may cause scorch. The use of trimethyl thiourea (TMU), on the other hand, results in the fastest rate and the most stable state of cure, good scorch safety, bin stability, and an overall good balance of properties. The sulfur-based crosslinking system induces good mechanical properties but causes limited bin stability, poor high-temperature compression set, and impaired heat resistance properties. As a curing agent, peroxide delivers the best bin stability in the rubber stocks but yields higher stiffness and limited aging resistance in the vulcanizates.


2021 ◽  
Author(s):  
Khaled F. El-Nemr ◽  
Magdy A. Ali ◽  
Yasser Gad

Abstract Virgin styrene-butadiene rubber (SBR) was replaced by devulcanized waste tire rubber (DWR) 50/50 and used as a rubber base for preparing composites to depend on different silicate types at fixed content 40 phr (part per hundred part of rubber). All composites were mixed on a rubber roll mill and then subjected to electron beam irradiation to induce cross-linking at a dose of 100 kGy. Different silicate fillers were used in this study like precipitated silica (PS) 40 phr, waste glass window (WG) - PS 20/20 phr, fly ash (FA)-PS 20/20 phr, and micaosilica (MS)-PS 20/20 phr. Waste silicate was treated with (3-aminopropyl)trimethoxysilane (APTMS) and blended with PS. Mechanical properties were investigated for composites like tensile strength, elongation at break, tensile modulus, and calculation of cross-link density from mechanical. As well as, application for floor tiles included compression set and abrasion resistance measurements. All results indicated an enhancement in tensile strength, modulus, and cross-link density by adding silicate fillers and more enhanced in presence of radiation. For the application of floor tiles, the MS filler gave a good compression set and abrasion resistance followed by other silicate fillers (PS, FA), except WG.


2021 ◽  
Author(s):  
Mike Weber ◽  
Maha Zaghdoudi ◽  
Anja K\xf6mmling ◽  
Matthias Jaunich ◽  
Dietmar Wolff

Sign in / Sign up

Export Citation Format

Share Document