Fabrication and Characterization of Electronic and Optical Properties of Polyaniline Nanopatterns

2015 ◽  
Vol 15 (3) ◽  
pp. 2212-2220 ◽  
Author(s):  
Yohei Watanabe ◽  
Kouichi Sato ◽  
Hitoshi Kato ◽  
Susumu Takemura ◽  
Kazuhiro Shimada ◽  
...  
2018 ◽  
Vol 3 (11) ◽  
Author(s):  
Pei Zhang ◽  
Shudong Lin ◽  
Jiwen Hu

Abstract Silver nanowires (AgNWs) have attracted attentions form both academia and industry due to their outstanding electronic and optical properties. The AgNW-based devices for various uses were invented in recent years. It is well known that the sizes of AgNWs have a crucial effect on the performance of AgNW-based devices. However, how to synthesize AgNWs with controlled sizes is still unsolved. Researchers reported many methods to synthesize AgNWs with different sizes in the past decade. However, a review that focuses on the synthetic methods of AgNWs is very rare. The aim of this review is to summarize the recent developments that have been achieved with AgNWs, and many procedure details and results and discussions will be provided for practical use. Graphical Abstract:


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mauro Melli ◽  
Melanie West ◽  
Steven Hickman ◽  
Scott Dhuey ◽  
Dianmin Lin ◽  
...  

AbstractThere are few materials that are broadly used for fabricating optical metasurfaces for visible light applications. Gallium phosphide (GaP) is a material that, due to its optical properties, has the potential to become a primary choice but due to the difficulties in fabrication, GaP thin films deposited on transparent substrates have never been exploited. In this article we report the design, fabrication, and characterization of three different amorphous GaP metasurfaces obtained through sputtering. Although the material properties can be further optimized, our results show the potential of this material for visible applications making it a viable alternative in the material selection for optical metasurfaces.


2021 ◽  
Author(s):  
Saad Ullah ◽  
Peixin Yang ◽  
Ghulam Abbas ◽  
Yongsheng Chen

Abstract In the recent years, cesium tin iodide (Cs2SnI6) double perovskite has emerged as a research hotspot in photovoltaics due to its exceptional stability and outstanding optoelectronic properties. In this work, we have utilized a reactant combination of SnI2 and I2 to prepare uniform Cs2SnI6 films via modified two-step process. The impact of the reaction conditions on the structural, morphological and optical properties is explored. It is found that optimizing the reaction conditions improves the phase stability and morphology of the films. The iodine-rich fabrication of the films ensued in enhanced PL and optical characteristics of the Cs2SnI6 with an optimal bandgap in the range of 1.21-1.34 eV. Additionally, we constructed all-inorganic photovoltaic devices FTO/TiO2/Cs2SnI6/Carbon utilizing optimized Cs2SnI6 films.


Nanoscale ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 3019-3028 ◽  
Author(s):  
Tim Verhagen ◽  
Valentino L. P. Guerra ◽  
Golam Haider ◽  
Martin Kalbac ◽  
Jana Vejpravova

Electronic and optical properties of two-dimensional transition metal dichalcogenides are strongly influenced by defects. Cryogenic photoluminescence spectroscopy is a superb tool for characterization of the nature and density of these defects.


2015 ◽  
Vol 40 (5) ◽  
pp. 820 ◽  
Author(s):  
Zhe Chen ◽  
Yin Hang ◽  
Lei Yang ◽  
Jun Wang ◽  
Xiangyong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document