N, S, O Self-Doped Porous Carbon Nanoarchitectonics Derived from Pinecone with Outstanding Supercapacitance Performances

2020 ◽  
Vol 20 (5) ◽  
pp. 2728-2735 ◽  
Author(s):  
Di Zhang ◽  
Yanchun Xue ◽  
Jiale Chen ◽  
Xingmei Guo ◽  
Dandan Yang ◽  
...  

Biomass-derived porous carbons are considered as one of the most promising electrode materials for supercapacitors due to their low-cost and natural abundance. In this work, pinecone is used to fabricate biomass N, S, O-doped porous carbon via one-step carbonization process with KOH activation. By optimizing the additive amount of KOH and calcination temperature, the asprepared product shows a high specific surface area and pore volume up to 1593.8 m2 g−1 and 0.8582 cm3 g−1, respectively. As an electric double-layer capacitor (EDLC) electrode, the N, S, O-doped porous carbon exhibits a high specific capacitance of 285 F g−1 at 0.5 A g−1 and good rate performance with a capacitance retention of 78.6% from 0.5 to 20 A g−1. Furthermore, the as-assembled symmetric supercapacitor with 6 mol L−1 KOH as electrolyte possesses a promising energy density of 6.34 Wh kg−1 and a power density of 250 W kg−1. Outstanding cycling stability was also demonstrated with 94.4% capacitance retention after 10,000 charge/discharge cycles at 1 A g−1.

2016 ◽  
Vol 4 (25) ◽  
pp. 9832-9843 ◽  
Author(s):  
Tian Ouyang ◽  
Kui Cheng ◽  
Yinyi Gao ◽  
Shuying Kong ◽  
Ke Ye ◽  
...  

Here, a novel and one-step molten salt synthesis of three-dimensional, densely nitrogen-doped porous carbon (NPC) material by using low-cost and eco-friendly tofu as the nitrogen-containing carbon source is proposed.


2021 ◽  
Author(s):  
Yingjie Su ◽  
Zhenjie Lu ◽  
Junxia Cheng ◽  
Xuefei Zhao ◽  
Xingxing Chen ◽  
...  

Development of high-efficient and low-cost heteroatom-doped porous carbon electrode is vitally important for high-performance supercapacitors. Herein, waste phenolic resin-based insulation boards, which naturally contain N and O elements, were deliberated...


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 738
Author(s):  
Mohamed Gamal Mohamed ◽  
Mahmoud M. M. Ahmed ◽  
Wei-Ting Du ◽  
Shiao-Wei Kuo

In this study, we successfully synthesized two types of meso/microporous carbon materials through the carbonization and potassium hydroxide (KOH) activation for two different kinds of hyper-crosslinked polymers of TPE-CPOP1 and TPE-CPOP2, which were synthesized by using Friedel–Crafts reaction of tetraphenylethene (TPE) monomer with or without cyanuric chloride in the presence of AlCl3 as a catalyst. The resultant porous carbon materials exhibited the high specific area (up to 1100 m2 g−1), total pore volume, good thermal stability, and amorphous character based on thermogravimetric (TGA), N2 adsoprtion/desorption, and powder X-ray diffraction (PXRD) analyses. The as-prepared TPE-CPOP1 after thermal treatment at 800 °C (TPE-CPOP1-800) displayed excellent CO2 uptake performance (1.74 mmol g−1 at 298 K and 3.19 mmol g−1 at 273 K). Furthermore, this material possesses a high specific capacitance of 453 F g−1 at 5 mV s−1 comparable to others porous carbon materials with excellent columbic efficiencies for 10,000 cycle at 20 A g−1.


Author(s):  
Shiying Lin ◽  
Lanlan Mo ◽  
Feijun Wang

Abstract A facile and environmentally friendly approach to produce self-doped hierachically porous carbon as electrode material for high-performance supercapacitor was demonstrated. 3D honeycomb-like hierarchically porous carbon was successfully obtained by one-step carbonization and activation of sodium carboxymethyl cellulose (CMC) via K2CO3. With the optimized temperature of carbonization and activation, the porous carbon material achieved well-shaped hierarchically pores (micro-, meso and macropores) like a honeycomb, ultrahigh specific surface area (1666 m2·g-1), as well as highly O-self-doping (3.6 at.%), endowing an excellent electrochemical properties for the electrode in three-electrode system. The porous carbon electrode material delivered a high specific capacitance of 300.8 F·g-1 at 1 A·g-1, an eminent rate capability of 228.4 F·g-1 at the current density up to 20 A·g-1 and outstanding cycle stability of 94.3% retention after 10000 cycles. Therefore, the CMC derived hierarchical porous carbon activated by K2CO3 would have promising foreground in application of supercapacitors.


2020 ◽  
Vol 8 (8) ◽  
pp. 4376-4385 ◽  
Author(s):  
Youyi Lei ◽  
Xinmiao Liang ◽  
Li Yang ◽  
Ping Jiang ◽  
Zhenyu Lei ◽  
...  

Low-cost hierarchical porous carbon materials with a controllable structure for supercapacitors and lithium selenium batteries.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 131 ◽  
Author(s):  
Yanhui Wang ◽  
Liyan Dong ◽  
Guiping Lai ◽  
Meng Wei ◽  
Xingbi Jiang ◽  
...  

Nitrogen-doped hierarchically porous carbons (HPCs), which are synthesized from benzoxazine resins, were successfully prepared following the processes of polymerization, carbonization, and potassium hydroxide (KOH) activation. As the key factor, the KOH activation temperature influences the pore structure and surface functionality, which are crucial for the excellent performance. The HPC-800 material, with the highest activation temperature (800 °C), displays a hierarchical pore structure, a high specific surface area (1812.4 m2·g−1), large total pore volume (0.98 cm3·g−1), high nitrogen content (1.27%), and remarkable electrical conductivity. It has also presented an excellent electrochemical performance of high specific capacitance of 402.4 F·g−1 at 0.1 A·g−1, excellent rate capability of 248.6 F·g−1 at 10 A·g−1, and long-term cycling stability with >99.0% capacitance retention after 500 cycles at 1 A·g−1 in 6 M KOH aqueous solution.


2019 ◽  
Vol 72 (6) ◽  
pp. 473 ◽  
Author(s):  
Zongkai Yue ◽  
Yaozu Kang ◽  
Tianyu Mao ◽  
Mengmeng Zhen ◽  
Zhiyong Wang

Titanium dioxide (TiO2) has been widely investigated as the electrode material for lithium ion batteries (LIBs), due to its low cost, small volume expansion, and high environmental friendliness. However, the fading capacity and short cycle life during the cycling process lead to poor cycling performance. Herein, multilayer TiO2 nanobelts with a high specific surface area and with many pores between nanoparticles are constructed via a simple and large-scale approach. Benefiting from the multilayer nanobelt structure, as-prepared TiO2 nanobelts deliver a high reversible capacity, strong cycling stability, and ultra-long cycle life (~185mAhg−1 at 500mAg−1 after 500 cycles) as electrode materials for LIBs.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950042 ◽  
Author(s):  
Yunfeng Wang ◽  
Honghui Jiang ◽  
Shewen Ye ◽  
Jiaming Zhou ◽  
Jiahao Chen ◽  
...  

As the low-cost, natural multi-component for elemental doping and environment-friendly characteristics, biomass-derived porous carbon for energy storage attracts intense attention. Herein, walnut shells-based porous carbon has been obtained through carbonization, hydrothermal and activation treatment. The corresponding porous carbon owns superior electrochemical performances with specific capacitance reaching up to 462[Formula: see text]F[Formula: see text]g[Formula: see text] at 1[Formula: see text]A[Formula: see text]g[Formula: see text], and shows excellent cycling stability (5000 cycles, [Formula: see text]94.2% of capacitance retention at 10[Formula: see text]A[Formula: see text]g[Formula: see text]). Moreover, the symmetry supercapacitor achieves high specific capacitance (197[Formula: see text]F[Formula: see text]g[Formula: see text] at 1[Formula: see text]A[Formula: see text]g[Formula: see text]), relevant electrochemical cycling stability (5000 cycles, 89.2% of capacitance retention at 5[Formula: see text]A[Formula: see text]g[Formula: see text]) and high power/energy density (42.8[Formula: see text]W[Formula: see text]h[Formula: see text]kg[Formula: see text] at 1249[Formula: see text]W[Formula: see text]kg[Formula: see text]). Therefore, the facile synthesis approach and superb electrochemical performance ensure that the walnut shells-derived porous carbon is a promising electrode material candidate for supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document