scholarly journals Nitrogen-Doped Hierarchically Porous Carbons Derived from Polybenzoxazine for Enhanced Supercapacitor Performance

Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 131 ◽  
Author(s):  
Yanhui Wang ◽  
Liyan Dong ◽  
Guiping Lai ◽  
Meng Wei ◽  
Xingbi Jiang ◽  
...  

Nitrogen-doped hierarchically porous carbons (HPCs), which are synthesized from benzoxazine resins, were successfully prepared following the processes of polymerization, carbonization, and potassium hydroxide (KOH) activation. As the key factor, the KOH activation temperature influences the pore structure and surface functionality, which are crucial for the excellent performance. The HPC-800 material, with the highest activation temperature (800 °C), displays a hierarchical pore structure, a high specific surface area (1812.4 m2·g−1), large total pore volume (0.98 cm3·g−1), high nitrogen content (1.27%), and remarkable electrical conductivity. It has also presented an excellent electrochemical performance of high specific capacitance of 402.4 F·g−1 at 0.1 A·g−1, excellent rate capability of 248.6 F·g−1 at 10 A·g−1, and long-term cycling stability with >99.0% capacitance retention after 500 cycles at 1 A·g−1 in 6 M KOH aqueous solution.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2048
Author(s):  
Periyasamy Thirukumaran ◽  
Raji Atchudan ◽  
Asrafali Shakila Parveen ◽  
Madhappan Santhamoorthy ◽  
Vanaraj Ramkumar ◽  
...  

Supercapacitors store energy either by ion adsorption or fast surface redox reactions. The capacitance produced by the former is known as electrochemical double layer capacitance and the latter is known as pseudo-capacitance. Carbon materials are found to be attractive materials for energy storage, due to their various micro-structures and wide source of availability. Polybenzoxazine (Pbz) is used as a source to produce carbon materials, due to the fact that the obtained carbon will be rich in N and O species for enhanced performance. Moreover, the carbon materials were produced via template-free method. In general, activation temperature plays a main role in altering the porosity of the carbon materials. The main purpose of this study is to find the suitable activation temperature necessary to produce porous carbons with enhanced performance. Considering these points, Pbz is used as a precursor to produce nitrogen-doped porous carbons (NRPCs) without using any template. Three different activation temperatures, namely 700, 800 and 900 °C, are chosen to prepare activated porous carbons; NRPC-700, NRPC-800 and NRPC-900. Hierarchical micro-/ meso-/macropores were developed in the porous carbons with respect to different activation temperatures. PBz source is used to produce carbons containing heteroatoms and an activation process is used to produce carbons with desirable pore structures. The surface morphology, pore structure and binding of heteroatoms to the carbon surface were analyzed in detail. NRPCs produced in this way can be used as supercapacitors. Further, electrodes were developed using these NRPCs and their electrochemical performance including capacitance, specific capacitance, galvanic charge/discharge, impedance, rate capability are analyzed. The obtained results showed that the activation temperature of 900 °C, is suitable to produce NRPC with a specific capacitance of 245 F g−1 at a current density of 0.5 A g−1, that are attributed to high surface area, suitable pore structure and presence of heteroatoms.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 738
Author(s):  
Mohamed Gamal Mohamed ◽  
Mahmoud M. M. Ahmed ◽  
Wei-Ting Du ◽  
Shiao-Wei Kuo

In this study, we successfully synthesized two types of meso/microporous carbon materials through the carbonization and potassium hydroxide (KOH) activation for two different kinds of hyper-crosslinked polymers of TPE-CPOP1 and TPE-CPOP2, which were synthesized by using Friedel–Crafts reaction of tetraphenylethene (TPE) monomer with or without cyanuric chloride in the presence of AlCl3 as a catalyst. The resultant porous carbon materials exhibited the high specific area (up to 1100 m2 g−1), total pore volume, good thermal stability, and amorphous character based on thermogravimetric (TGA), N2 adsoprtion/desorption, and powder X-ray diffraction (PXRD) analyses. The as-prepared TPE-CPOP1 after thermal treatment at 800 °C (TPE-CPOP1-800) displayed excellent CO2 uptake performance (1.74 mmol g−1 at 298 K and 3.19 mmol g−1 at 273 K). Furthermore, this material possesses a high specific capacitance of 453 F g−1 at 5 mV s−1 comparable to others porous carbon materials with excellent columbic efficiencies for 10,000 cycle at 20 A g−1.


2011 ◽  
Vol 287-290 ◽  
pp. 1420-1423 ◽  
Author(s):  
Wei Xing ◽  
Xiao Li ◽  
Xiu Li Gao ◽  
Shu Ping Zhuo

Highly porous carbons were prepared from sunflower seed shell (SSS) by chemical activation and used as electrode material for electrochemical double layer capacitor (EDLC). The surface area and pore structure of the porous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature. Electrochemical measurements show that the carbons have excellent capacitive behavior and high capacitance retention ratio at high drain current, which is due to that there are both abundant macroscopic pores and micropore surface in the texture of the carbons. More importantly, the capacitive performances of these carbons are much better than ordered mesoporous carbons, thus highlighting the success of preparing high performance electrode material for EDLC from SSS.


2021 ◽  
Author(s):  
Feiqiang Guo ◽  
Yinbo Zhan ◽  
Xiaopeng Jia ◽  
Huiming Zhou ◽  
Shuang Liang ◽  
...  

Using Sargassum as the precursor, a novel approach was developed to synthesize three-dimensional porous carbons as high-performance electrode materials for supercapacitors via KOH activation and subsequent nitrogen-doping employing melamine as...


RSC Advances ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 4925-4931 ◽  
Author(s):  
Weiping Kong ◽  
Jing Liu

Nitrogen-doped, hierarchically porous carbons were prepared by the activation of waste cow manure at 600 °C, which acted as efficient catalysts for the highly selective capture and conversion of CO2into valuable chemicals.


2019 ◽  
Vol 3 (5) ◽  
pp. 1201-1214 ◽  
Author(s):  
Weiwei Shi ◽  
Binbin Chang ◽  
Hang Yin ◽  
Shouren Zhang ◽  
Baocheng Yang ◽  
...  

Valuable 3D honeycomb-like graphitized hierarchically porous carbons are synthesized from crab shell bio-waste for high rate capability of all-solid-state supercapacitors.


2020 ◽  
Vol 20 (5) ◽  
pp. 2728-2735 ◽  
Author(s):  
Di Zhang ◽  
Yanchun Xue ◽  
Jiale Chen ◽  
Xingmei Guo ◽  
Dandan Yang ◽  
...  

Biomass-derived porous carbons are considered as one of the most promising electrode materials for supercapacitors due to their low-cost and natural abundance. In this work, pinecone is used to fabricate biomass N, S, O-doped porous carbon via one-step carbonization process with KOH activation. By optimizing the additive amount of KOH and calcination temperature, the asprepared product shows a high specific surface area and pore volume up to 1593.8 m2 g−1 and 0.8582 cm3 g−1, respectively. As an electric double-layer capacitor (EDLC) electrode, the N, S, O-doped porous carbon exhibits a high specific capacitance of 285 F g−1 at 0.5 A g−1 and good rate performance with a capacitance retention of 78.6% from 0.5 to 20 A g−1. Furthermore, the as-assembled symmetric supercapacitor with 6 mol L−1 KOH as electrolyte possesses a promising energy density of 6.34 Wh kg−1 and a power density of 250 W kg−1. Outstanding cycling stability was also demonstrated with 94.4% capacitance retention after 10,000 charge/discharge cycles at 1 A g−1.


RSC Advances ◽  
2015 ◽  
Vol 5 (14) ◽  
pp. 10296-10303 ◽  
Author(s):  
Zhiling Du ◽  
Youshun Peng ◽  
Zhipeng Ma ◽  
Chunying Li ◽  
Jing Yang ◽  
...  

Three-dimensional (3D) interconnected N-doped porous carbons (NPCs) with different levels of pore structure are synthesized by a template method using MnOx as template and N-enriched pyrrole as carbon source.


2017 ◽  
Vol 5 (4) ◽  
pp. 1526-1532 ◽  
Author(s):  
Zhengping Zhang ◽  
Xinjin Gao ◽  
Meiling Dou ◽  
Jing Ji ◽  
Feng Wang

Fe–Nxmoiety-modified nitrogen-doped hierarchically porous carbon, which is derived from porphyra, exhibits an excellent catalytic performance for oxygen reduction.


Sign in / Sign up

Export Citation Format

Share Document