Effect of redox additive in aqueous electrolyte on the high specific capacitance of cation incorporated MnCo2O4@Ni(OH)2 electrode materials for flexible symmetric supercapacitor

Author(s):  
Prakas Samanta ◽  
Souvik Ghosh ◽  
Naresh Chandra Murmu ◽  
Tapas Kuila
2020 ◽  
Vol 13 (02) ◽  
pp. 2051007
Author(s):  
Jie Dong ◽  
Qinghao Yang ◽  
Qiuli Zhao ◽  
Zhenzhong Hou ◽  
Yue Zhou ◽  
...  

Electrode materials with a high specific capacitance, outstanding reversibility and excellent cycle stability are constantly pursued for supercapacitors. In this paper, we present an approach to improve the electrochemical performance by combining the advantages of both inorganic and organic. Ni-MnO2/PANi-co-PPy composites are synthesized, with the copolymer of aniline/pyrrole being coated on the surface of Ni-doped manganese dioxide nanospheres. The inorganic–organic composite enables a substantial increase in its specific capacitance and cycle stability. When the mass ratio of Ni-MnO2 to aniline and pyrrole mixed monomer is 1:5, the composite delivers high specific capacitance of 445.49[Formula: see text]F/g at a scan rate of 2[Formula: see text]mV/s and excellent cycle stability of 61.65% retention after 5000 cycles. The results indicate that the Ni-MnO2/PANi-co-PPy composites are promising electrode materials for future supercapacitors application.


1999 ◽  
Vol 575 ◽  
Author(s):  
Suh-Cern Pang ◽  
MarcA Anderson

ABSTRACTNanoparticulate MnO2thin films fabricated by the sol-gel process have been shown to be an outstanding novel electrode material for Ultracapacitors. The average specific capacitance of sol-gel-derived MnO2thin-films on nickel substrates as determined by cyclic voltammetry ranged from 566 to 698 F/g. These films also exhibited good cycling stability within the potential range of 0.0-0.9V (vs SCE) in unbuffered aqueous electrolyte. Both CV and XPS studies showed that MnO2films have remained chemically and structurally intact after 1,500 cycles. The XRD spectra and SEM micrographs showed that the microstructure of MnO2thin films are highly porous, and poorly crystalline or amorphous in nature. The high specific capacitance of MnO2may be predominantly due to pseudocapacitance associated with homogenous and reversible redox reactions of proton insertion into and out of the MnO2lattice. Any variation in the microstructure and thickness of films might affect proton mobility within the oxide matrix and thereby affecting their cycling behaviors. Further optimization of the cycling behaviors is envisaged with better microstructural and thickness control of these sol-gelderived nanoparticulate MnO2thin films.


RSC Advances ◽  
2016 ◽  
Vol 6 (64) ◽  
pp. 58994-59000 ◽  
Author(s):  
Abdul Muqsit Khattak ◽  
Huajie Yin ◽  
Zahid Ali Ghazi ◽  
Bin Liang ◽  
Azhar Iqbal ◽  
...  

Three dimensional iron oxide/graphene aerogel hybrid (Fe2O3/GA) was synthesized and used as electrode materials in flexible supercapacitor devices, which show high specific capacitance of 440 F g−1 with 89% capacitance retention after 2200 cycles.


2011 ◽  
Vol 306-307 ◽  
pp. 134-138 ◽  
Author(s):  
Wei Dong Yin ◽  
Gui Lian Li ◽  
Xian Ming Liu

NiO/Ni nanocomposites were prepared by chemically reduction-oxidation process in tetra-ethylene glycol (TEG) solution. The structure and morphology of the samples were examined by XRD and SEM. The results indicated the composite consisted of NiO and Ni and exhibited spherical morphology with diameter of 50-200 nm. The electrochemical performances of composite electrodes used in electrochemical capacitors were studied. The electrochemical measurements were carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy in 6M KOH aqueous electrolyte using three-electrode Swagelok systems. The results showed that the composite had a high specific capacitance and excellent capacitive behavior. The specific capacitance of the composite decreased to 192F/g after 500 cycles. Due to the existance of Ni, the charge transfer resistance is lower than 1Ω. It revealed that the composite exhibited good cycling performance.


2018 ◽  
Vol 281 ◽  
pp. 854-858
Author(s):  
Xi Cheng Gao ◽  
Jian Qiang Bi ◽  
Wei Li Wang ◽  
Guo Xun Sun ◽  
Xu Xia Hao ◽  
...  

NiFe2O4 powders were synthesized by a facile hydrothermal method at 180°C followed by a thermal treatment at 300°C. The phase composition and morphology were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the NiFe2O4 powders were well-crystallized, and they possessed a particle size in the range of 50-100 nm. The electrochemical property was characterized via cyclic voltammetry (CV) and constant current charge-discharge method. Encouragingly, the NiFe2O4 powders had an excellent electrochemical property, whose specific capacitance reached 266.84 F/g at the electric current density of 1 A/g due to the small particle size. Compared with other Fe-based metal compound oxides, NiFe2O4 has a better electrochemical performance, which can be widely used in the supercapacitor electrode materials.


2017 ◽  
Vol 20 (4) ◽  
pp. 197-204
Author(s):  
Weiliang Chen ◽  
Shuhua Pang ◽  
Zheng Liu ◽  
Zhewei Yang ◽  
Xin Fan ◽  
...  

Polypyrrole with hierarchical dendritic structures assembled with cauliflower-like structure of nanospheres, was synthesized by chemical oxidation polymerization. The structure of polyryrrole was characterized by Fourier transform infrared spectrometer and scanning electron microscopy. The electrochemical performance was performed on CHI660 electrochemical workstation. The results show that oxalic acid has a significant effect on morphology of PPy products. The hierarchical dendritic PPyOA(3) electrodes possess a large specific capacitance as high as 744 F/g at a current density of 0.2 A/g and could achieve a higher specific capacitance of 362 F/g even at a current density of 5.0 A/g. Moreover, the dendritic PPy products produce a large surface area on the electrode through the formation of the channel structure with their assembled cauliflower-like morphology, which facilitates the charge/electron transfer relative to the spherical PPy electrode. The spherical dendritic PPyOA(3) electrode has 58% retention of initial specific capacitance after 260 cycles. The as-prepared dendritic polypyrrole with high performance is a promsing electrode material for supercapacitor.


2012 ◽  
Vol 27 (2) ◽  
pp. 481-485 ◽  
Author(s):  
Britta Andres ◽  
Sven Forsberg ◽  
Ana Paola Vilches ◽  
Renyun Zhang ◽  
Magnus Hummelgård ◽  
...  

Abstract Paper based supercapacitors are prepared by stacking a paper between two graphene electrodes and soaking these in an aqueous electrolyte. We demonstrate that supercapacitors can easily be manufactured by using proven paper technologies. Several different electrode materials were compared and two types of contacting material, silver and graphite foil were tested. The influence of the paper used as separator was also investigated. The supercapacitors with a graphene-gold nanoparticle composite as electrodes showed a specific capacitance of up to 100 F/g and an energy density of 1.27 Wh/kg. The energy density can further be increased by using other electrolytes. The silver contacts showed a pseudo capacitance, which the graphite contacts did not. The papers tested had a minor effect on the capacitance, but they have an influence on the weight and the volume of the supercapacitor.


RSC Advances ◽  
2015 ◽  
Vol 5 (86) ◽  
pp. 70297-70301 ◽  
Author(s):  
Yong Zhang ◽  
Youfu Wang ◽  
Aiguo Hu

Hierarchically porous carbon nanofoams were prepared via the formation of core–shell organosilica nanoparticles and subsequent Friedel–Crafts chemistry. The specific capacitance of them as electrode materials reached 170 F g−1 in an aqueous electrolyte.


2015 ◽  
Vol 08 (04) ◽  
pp. 1550031 ◽  
Author(s):  
Baolin Xing ◽  
Jianliang Cao ◽  
Yan Wang ◽  
Guiyun Yi ◽  
Chuanxiang Zhang ◽  
...  

A lignite-based activated carbon (LAC) for electrochemical capacitors (ECs) was prepared from high moisture lignite by KOH activation, and the as-prepared sample was characterized by the N 2-sorption, scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical performances of ECs with activated carbon as electrodes in 3 M KOH aqueous solution were evaluated by constant current charge-discharge and cyclic voltammetry. The LAC exhibits a well-developed surface area of 2581 m2/g, a relative wide pore size distribution of 0.5–10 nm. The ECs with LAC as electrode materials presents a high specific capacitance of 392 F/g at a low current density of 50 mA/g, and still remains 315 F/g even at a high current density of 5 A/g. The residual specific capacitance is as high as 92.9% after 2000 cycles. Compared with the commercial activated carbon (Maxsorb: Commercial product, Kansai, Japan), the LAC based electrode materials shows superior capacitive performance in terms of specific capacitance and charge–discharge performance at the high current density.


MRS Advances ◽  
2020 ◽  
pp. 1-8
Author(s):  
D. Guragain ◽  
C. Zequine ◽  
R. Bhattarai ◽  
J. Choi ◽  
R. K. Gupta ◽  
...  

ABSTRACT The binary metal oxides are increasingly used as supercapacitor electrode materials in energy storing devices. Particularly NiCo2O4 has shown promising electrocapacitive performance with high specific capacitance and energy density. The electrocapacitive performance of these oxides largely depends on their morphology and electrical properties governed by their energy band-gaps and defects. The morphological structure of NiCo2O4 can be altered via the synthesis route, while the energy band-gap could be altered by doping. Also, doping can enhance crystal stability and bring in grain refinement, which can further improve the much-needed surface area for high specific capacitance. Given the above, this study evaluates the electrochemical performance of Ca-doped Ni1-xCaxCo2O4 (0 ≤ x ≤ 0.8) compounds. This stipulates promising applications for electrodes in future supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document