Formulation of Liposomes Containing Royal Jelly and Their Quality Assessment

2021 ◽  
Vol 21 (5) ◽  
pp. 2841-2846
Author(s):  
Kristina Perminaite ◽  
Anna Maria Fadda ◽  
Chiara Sinico ◽  
Kristina Ramanauskiene

Royal jelly, a gelatinuous consistency bee product produced and secreted by the hypopharyngeal and mandibular glands of worker honeybees, is beneficial in the treatment of dermatological conditions, likely through its content of the fatty acid 10-hydroxy-2-decenoic acid (10-HDA). However, 10-HAD poorly penetrates into skin. Thus, in this work, we produced royal jelly incorporated liposomes with the aim of increasing skin penetration of 10-HDA. Lipid nanocarriers were prepared by the thin lipid-film hydration method. Size and polydispersity index of the nanocarrier particles, and their stability over 30 days were measured. The effects of royal jelly and 10-HDA liposomal formulations on the viability of immortalized human keratinocyte cells were tested with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The skin penetration of 10-HDA from liposomal formulations and royal jelly solution was studied in vitro with Franz type vertical diffusion cells using porcine skin as limiting membrane. As result, small liposomes were achieved, and the efficacy of the obtained nanoformulations was examined by means of in vitro cell assays with a HaCaT immortalized human keratinocyte cell culture line. Finally, the skin penetration experiments showed that liposomal incorporation greatly increased 10-HDA penetration into skin layers.

2021 ◽  
Vol 7 (1) ◽  
pp. 35-38
Author(s):  
Sudipta Das ◽  
Arnab Samanta ◽  
Koushik Bankura ◽  
Debatri Roy ◽  
Amit Nayak

The present work is focused on the preparation and in vitro release kinetics of liposomal formulation of Leuprolide Acetate. In this work, “Thin Lipid Film Hydration Method” was used for preparation of Leuprolide Acetate loaded liposomes. Prepared liposomal formulations of Leuprolide acetate was evaluated by drug entrapment study, in-vitro drug release kinetics and stability studies. The percentage drug entrapment of Leuprolide acetate for F1 and F2 formulations were found to be 78.14 ± 0.67 and 66.70 ± 0.81% respectively. In-vitro drug release study of liposomal formulations had shown zero order release pattern. Regression co-efficient (R2) value of Zero order kinetics for F1 and F2 formulations were 0.9912 and 0.9676 respectively. After storing formulations for 1 month, stability testing was done at 40C.It was found that all batches were stable. These liposomal formulations of Leuprolide acetate can be formulated for parenteral application to treat prostate cancer and in women, to treat symptoms of endometriosis (overgrowth of uterine lining outside of the uterus) or uterine fibroids.


1995 ◽  
Vol 85 (2) ◽  
pp. 105-112 ◽  
Author(s):  
Matthias Dürst ◽  
Sibylle Seagon ◽  
Sylke Wanschura ◽  
Harald zur Hausen ◽  
Jörn Bullerdiek

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
J. Hartinger ◽  
P. Veselý ◽  
E. Matoušková ◽  
S. Argalacsová ◽  
L. Petruželka ◽  
...  

5-fluorouracil (5-FU) is one of the most commonly used antineoplastic drugs in the anticancer therapy. The hand-foot (HF) syndrome (palmar-plantar erythrodysesthesia) is an adverse effect frequently related to long-term i.v. administration of 5-FU or its orally applicable prodrug capecitabine. Its severity can even lead to interruption of the otherwise effective anticancer therapy. Tentative practice in some clinics has shown that topical application of 10% uridine ointment is beneficial for calming down the HF syndrome. This study is focused on verifying the alleged protective activity of uridine in thein vitromodel of cultured human keratinocyte cell line HaCaT. We also tested the protective effects of thymidine alone or uridine-thymidine combination. The cellular viability time progression was measured in order to evaluate the effect of protective agents by three different types of cytopathogenicity tests—NTCA test (non-destructive test of cellular activity), modified MTT test and RTCA (real-time cell analyser, Roche). All three methods proved the ability of uridine and uridine-thymidine combination to protect keratinocytes against 5-FU damagein vitro. While thymidine alone did not show any remarkable effect, the thymidine-uridine combination demonstrated enhanced protective activity compared to uridine alone. Our findings provided the supporting rationale for using uridine or uridine-thymidine ointments in the HF syndrome local therapy.


Toxicology ◽  
1996 ◽  
Vol 106 (1-3) ◽  
pp. 187-196 ◽  
Author(s):  
H. Babich ◽  
H.L. Zuckerbraun ◽  
B.J. Wurzburger ◽  
Y.L. Rubin ◽  
E. Borenfreund ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document