Fabrication and Release Kinetics of Liposomes Containing Leuprolide Acetate

2021 ◽  
Vol 7 (1) ◽  
pp. 35-38
Author(s):  
Sudipta Das ◽  
Arnab Samanta ◽  
Koushik Bankura ◽  
Debatri Roy ◽  
Amit Nayak

The present work is focused on the preparation and in vitro release kinetics of liposomal formulation of Leuprolide Acetate. In this work, “Thin Lipid Film Hydration Method” was used for preparation of Leuprolide Acetate loaded liposomes. Prepared liposomal formulations of Leuprolide acetate was evaluated by drug entrapment study, in-vitro drug release kinetics and stability studies. The percentage drug entrapment of Leuprolide acetate for F1 and F2 formulations were found to be 78.14 ± 0.67 and 66.70 ± 0.81% respectively. In-vitro drug release study of liposomal formulations had shown zero order release pattern. Regression co-efficient (R2) value of Zero order kinetics for F1 and F2 formulations were 0.9912 and 0.9676 respectively. After storing formulations for 1 month, stability testing was done at 40C.It was found that all batches were stable. These liposomal formulations of Leuprolide acetate can be formulated for parenteral application to treat prostate cancer and in women, to treat symptoms of endometriosis (overgrowth of uterine lining outside of the uterus) or uterine fibroids.

Author(s):  
Nani Tadhi ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Transdermal patch is a drug delivery device in which the drugs are incorporated and is design in such a way that it releases the drug in sustained and at predetermined rate to deliver the drug through the skin to the systemic circulation painlessly. The aim of this research study was to formulate a controlled and sustained release transdermal matrix type patch of Methimazole. The matrix patch was prepared by solvent casting method using a various polymer in different concentration, HPMC (hydrophilic), Eudragit RL100 and Ethyl cellulose (hydrophobic) polymer. Total 9 prototype formulation were prepared and it was subjected for various evaluation test; weight uniformity, Folding endurance, thickness, Drug content, percent moisture content, percent Moisture uptake and In-vitro drug release study using Franz diffusion cell. The in-vitro CDR% data was fit into kinetics model to see the release kinetics from the patches. The Formulation F5 was choosen as a best formulation according to in-vitro drug release study. The in-vitro release was found 81.12 % in 12 hours, it followed zero order kinetics. The nature of polymer and concentration ratio of polymers plays a crucial role for obtaining a good transdermal patch design; therefore optimisation is very important step to formulate a desired TDDS. Therefore the result of the study encourages a further study and is hopeful that the present study would contribute to the recent pharmaceutical research for formulation development.


2021 ◽  
Vol 10 (2) ◽  
pp. 48-52
Author(s):  
J Adlin Jino Nesalin ◽  
Preethi Raj M N

The main objective of this research is to evaluate a new approach for the preparation of bio adhesive nanoparticles and to design an innovative topical delivery system for curcumin which is able to enhance the drug anticancer activity. Curcumin encapsulated nanoparticles were prepared by ionic gelation method. The nanoparticles were found to be discrete, spherical with free-flowing properties and evaluated for particle size analysis, shape (scanning electron microscopy), drug encapsulation efficiency, FTIR, DSC studies and in vitro release performance. The best selected nanoparticles formulation (FS5, containing drug: polymer ratio 1:5) was incorporated into gels with a bio adhesive polymer. The Nanoencapsulated topical gels were evaluated for pH, spreadability, extrudability, viscosity, in vitro drug release, drug release kinetics, bio adhesion test, accelerated stability of selected gel formulation. In vitro drug release rate for selected Nanoencapsulated bio adhesive topical gel (FS3 gel, containing 1 % w/w of drug loaded nanoparticles and 0.6 % w/w of Carbopol 934) was found to control curcumin release over 12h. The results were then compared statistically and obtained a satisfactory correlation. Thus, in conclusion preparation protocol of Nanoencapsulated topical gel study may be adopted for a successful delivery of Curcumin for topical use.


Author(s):  
Roshan K Pawar ◽  
Kalaiselvan S ◽  
Balamurugan K

The intention of this current study is to intensify the bioavailability of drugs which have lower bioavailability (<20 %) like Lovastatin in the form of NLC carrier and also to optimize the formulation to select perfect variables for the formulation. The Nanostructures lipid carrier was formulated using Hot Homogenization technique with some optimization by utilizing 23 factorial design with the heal of response like in-vitro drug release, % Entrapment Efϑiciency (EE%), % drug Content (%DC), Zeta potential (Zp), Polydispersity Index (PI) and Particle Size (PS) for 12 hours. The kinetic studies of in-vitro drug release was performed and the parameters of the drug in different kinetic models like higuchi kinetic, zero order, ϑirst order, peppas models were evaluated. Invitro release kinetics studies show that optimized formulation NLC (N3) obeys Super Case II kinetics transport mechanism i.e., release of drug through reduction of attractive forces between Lipid chains and Zero order release kinetics for controlled drug delivery. Hence Nanostructure lipid carrier shows a good control and predetermined rate of drug release of Lovastatin. From the obtained outcome, N3 formulation was concluded as an optimized formulation with selected formulation variables like Solid Lipid: Liquid Lipid ratio (6:4), Span 80 as Surfactant (1%) and process variables like homogenization Speed as 5000 Rotations per minute for 15 mins.><20 %) like Lovastatin in the form of NLC carrier and also to optimize the formulation to select perfect variables for the formulation. The Nanostructures lipid carrier was formulated using Hot Homogenization technique with some optimization by utilizing 23 factorial design with the heal of response like in-vitro drug release, % Entrapment Efficiency (EE%), % drug Content (%DC), Zeta potential (Zp), Polydispersity Index (PI) and Particle Size (PS) for 12 hours. The kinetic studies of in-vitro drug release was performed and the parameters of the drug in different kinetic models like higuchi kinetic, zero order, first order, peppas models were evaluated. Invitro release kinetics studies show that optimized formulation NLC (N3) obeys Super Case II kinetics transport mechanism i.e., release of drug through reduction of attractive forces between Lipid chains and Zero order release kinetics for controlled drug delivery. Hence Nanostructure lipid carrier shows a good control and predetermined rate of drug release of Lovastatin. From the obtained outcome, N3 formulation was concluded as an optimized formulation with selected formulation variables like Solid Lipid: Liquid Lipid ratio (6:4), Span 80 as Surfactant (1%) and process variables like homogenization Speed as 5000 Rotations per minute for 15 mins.


Author(s):  
Chinmaya Keshari Sahoo ◽  
Amiyakanta Mishra ◽  
Amaresh Prusty ◽  
S. Ram Mohan Rao ◽  
Jimidi Bhaskar

The present study was undertaken to develop floating tablets of lamivudine. The tablets were prepared by direct compression method. The prepared tablets were evaluated for pre compression parameters, post compression parameters, in vitro drug release study and in vitro buoyancy study. Among the prepared formulations F4 batch show 90.98% drug release in 12 h. The in vitro release kinetics were analyzed for different batches by different pharmacokinetic models such as zero order, first order, Higuchi, and Korsmeyer Peppas. The result of optimized formulation releases drug up to 12 h in a controlled manner and follows Higuchi kinetics. Short term stability study at 40±2ºC/75±5% RH for three months on the best formulation was performed showing no significant changes in thickness, hardness, friability, drug content and in vitro drug release.


Author(s):  
MILIND J. AMIN ◽  
KEYUR S. PATEL ◽  
DEEPA R. PATEL ◽  
ZIL P. PATEL ◽  
JAYANTI V. BAJAG

Objective: The aim of the study was to develop sustained release pellets of lornoxicam using Eudragit RLPO and Eudragit RSPO to reduce the dosing frequency. Methods: The sustained release pellets of lornoxicam were prepared by extrusion–spheronization technique using Eudragit RLPO and Eudragit RSPO as release retardant polymers and microcrystalline cellulose as spheronizing agent. A 32 Full factorial design was applied to investigate the combined effect of the two independent variables i.e. concentration of Eudragit RLPO (X1) and concentration of Eudragit RSPO (X2) on the dependent variables, In vitro drug release at 1h (Y1), In vitro drug release at 4 h (Y2) and In vitro drug release at 12 h. (Y3). Results: The optimized formulation (F0) show in vitro drug release 11.24±1.21 %, 43.69±1.28 %, 82.69±1.74 % and 100.24±1.56 % at 1 h, 4 h, 12 h and 24 h respectively. Drug excipients compatibility study by FTIR showed no interaction between drug and excipients. Eudragit RLPO and Eudragit RSPO had a significant effect on in vitro drug release. Conclusion: From all parameters and experimental design evaluation, it was concluded that the drug release rate decreased with an increase the concentration of Eudragit RLPO and Eudragit RSPO. SEM Photomicrograph of pellets revealed that the surface was rough and the pellets were spherical shaped in nature. The in vitro release kinetics revealed higuchi model is followed and drug release is by anamolous diffusion.


2021 ◽  
Vol 10 (2) ◽  
pp. 56-60
Author(s):  
J Adlin Jino Nesalin ◽  
Shafiya Khanum

The main objective of this research is to evaluate a new approach for the preparation of bio adhesive microparticles and to design an innovative vaginal delivery system for curcumin which is able to enhance the drug anticancer activity. Curcumin encapsulated microspheres were prepared by solvent evaporation method. The microspheres were found to be discrete, spherical with free-flowing properties and evaluated for particle size analysis, shape (scanning electron microscopy), drug encapsulation efficiency, FTIR, DSC studies and in vitro release performance. The best selected microsphere formulation (F2, containing drug: polymer ratio 1:2) was incorporated into gels with a bio adhesive polymer. The microencapsulated vaginal gels were evaluated for pH, spreadability, extrudability, viscosity, in vitro drug release, drug release kinetics, bio adhesion test, accelerated stability of selected gel formulation. In vitro drug release rate for selected microencapsulated bio adhesive vaginal gel (FS3 gel, containing 1 % w/w of drug loaded microspheres and 0.6 % w/w of Carbopol 934) was found to sustain curcumin over 12h. The results were then compared statistically and obtained a satisfactory correlation. Thus, in conclusion preparation protocol of microencapsulated vaginal gel study may be adopted for a successful development of newer drug delivery system of other drugs for administration to vagina.


Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Tilak R. Bhardwaj ◽  
Rajesh K. Singh

Aims: In the present study, polymer-drug conjugates were synthesized based on azo-bond cleavage drug delivery approach for targeting erlotinib as anticancer drug specifically to the colon for the proficient treatment of colon cancer. Background: Colon cancer (CC) is the third commonly detected tumor worldwide and it make up about 10 % of all cases of cancers. Most of the chemotherapeutic drugs available for treating colon cancer are not only toxic to cancerous cells but also to the normal healthy cells. Among the various approaches to get rid of the adverse effects of anticancer agents, prodrugs are one of the most imperative approaches. Objective: The objective of the study is to chemically modify the erlotinib drug through azo-bond linkage and suitable spacer which will be finally linked to polymeric backbone to give desired polymer linked prodrug. The azo reductase enzyme present in colon is supposed to cleave the azo-bond specifically and augment the drug release at the colon. Methods: The synthesized conjugates were characterized by IR and 1H-NMR spectroscopy. The cleavage of aromatic azobond resulted in a potential colon-specific liberation of drug from conjugate studied in rat fecal contents. In vitro release profiles of polyphosphazene-linked conjugates of erlotinib have been studied at pH 1.2, pH 6.8 and pH 7.4. The stability study was designed to exhibit that free drug was released proficiently and unmodified from polyphosphazene-erlotinib conjugates having aromatic azo-bond in artificial colon conditions. Results: The synthesized conjugates were demonstrated to be stable in simulated upper gastro-intestinal tract conditions. The drug release kinetics shows that all the polymer-drug conjugates of erlotinib follow zero-order release kinetics which indicates that the drug release from the polymeric backbone is independent of its concentration. Kinetic study of conjugates with slope (n) shows the anomalous type of release with an exponent (n) > 0.89 indicating a super case II type of release. Conclusion: These studies indicate that polyphosphazene linked drug conjugates of erlotinib could be the promising candidates for the site-specific treatment of colon cancer with least detrimental side-effects.


2020 ◽  
Vol 10 (5) ◽  
pp. 649-663
Author(s):  
Reena Siwach ◽  
Parijat Pandey ◽  
Harish Dureja

Background: The rate-limiting step in the oral absorption of BCS class II drugs is dissolution. Their low solubility is one of the major obstacles in the process of drug development. Dissolution rate can be increased by decreasing the particle size to the nano range, eventually leading to increased bioavailability. Objective: : In the present study, glimepiride loaded nanoparticles were prepared to enhance the dissolution rate. The aim of the work was to examine the effect of polymer-drug ratio, solvent-antisolvent ratio and speed of mixing on in vitro release of glimepiride. Methods: Glimepiride is an antidiabetic drug belonging to the BCS class II drugs. The polymeric nanoparticles were formulated according to Box-Behnken Design (BBD) using nanoprecipitation technique. The prepared nanoparticles were evaluated for in vitro drug release, loading capacity, entrapment efficiency, and percentage yield. Result: It was found that NP-8 has maximum in vitro drug release and was selected as an optimized batch. Analysis of Variance (ANOVA) was applied to the in vitro drug release to study the fitness and significance of the model. The batch NP-8 showed 70.34 ± 1.09% in vitro drug release in 0.1 N methanolic HCl and 92.02 ± 1.87% drug release in phosphate buffer pH 7.8. The release data revealed that the nanoparticles followed zero order kinetics. Conclusion: The study revealed that the incorporation of glimepiride into gelucire 50/13 resulted in enhanced dissolution rate.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1130
Author(s):  
Mariana Pires Figueiredo ◽  
Ana Borrego-Sánchez ◽  
Fátima García-Villén ◽  
Dalila Miele ◽  
Silvia Rossi ◽  
...  

This work presents the development of multifunctional therapeutic membranes based on a high-performance block copolymer scaffold formed by polyether (PE) and polyamide (PA) units (known as PEBA) and layered double hydroxide (LDH) biomaterials, with the aim to study their uses as wound dressings. Two LDH layer compositions were employed containing Mg2+ or Zn2+, Fe3+ and Al3+ cations, intercalated with chloride anions, abbreviated as Mg-Cl or Zn-Cl, or intercalated with naproxenate (NAP) anions, abbreviated as Mg-NAP or Zn-NAP. Membranes were structurally and physically characterized, and the in vitro drug release kinetics and cytotoxicity assessed. PEBA-loading NaNAP salt particles were also prepared for comparison. Intercalated NAP anions improved LDH–polymer interaction, resulting in membranes with greater mechanical performance compared to the polymer only or to the membranes containing the Cl-LDHs. Drug release (in saline solution) was sustained for at least 8 h for all samples and release kinetics could be modulated: a slower, an intermediate and a faster NAP release were observed from membranes containing Zn-NAP, NaNAP and Mg-NAP particles, respectively. In general, cell viability was higher in the presence of Mg-LDH and the membranes presented improved performance in comparison with the powdered samples. PEBA containing Mg-NAP sample stood out among all membranes in all the evaluated aspects, thus being considered a great candidate for application as multifunctional therapeutic dressings.


Sign in / Sign up

Export Citation Format

Share Document