Polyhedral Oligomeric Silsesquioxane Based Silicone Ophthalmic Contact Lens Material Containing Neodymium Nanoparticles

2021 ◽  
Vol 21 (9) ◽  
pp. 4625-4631
Author(s):  
Min-Jae Lee ◽  
A-Young Sung

This research was conducted to analyze the compatibility of used monomers and produce the high functional POSS-based ophthalmic polymer containing silicone monomers and neodymium nanoparticle. Synthesized silicone polymer (SiD), trimethylsilylmethacrylate (TSMA), N-vinyl-2-pyrrolidone (NVP) and neodymium nanoparticles were used as additives for the basic combination of polyhedral oligomeric silsesquioxane (POSS), and methyl methacrylate (DMA). And also, the materials were copolymerized with ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent, azobisisobutyronitrile (AIBN) as the initiator. It is judged that the POSS-co-NVP polymer is optically good and thus have good compatibility. Especially copolymerization with TSMA showed high oxygen permeability, but with SID considered to be more stable judging by lens shape. Physical properties shows that the neodymium nanoparticle increases the wettability while maintaining water content. These materials are considered to make synergy effect each other, so it can be used in functional hydrogel ophthalmic lenses.

2020 ◽  
Vol 20 (11) ◽  
pp. 6954-6958
Author(s):  
Min-Jae Lee ◽  
A.-Young Sung

This research is conducted to analyze the compatibility of used monomers and produce the high functional hydrogel ophthalmic polymer containing silane and nanoparticles. Vinyltrimethoxysilane (VTMS) and cobalt oxide nanoparticles are used as additives for the basic combination of silicone monomer (Sil-H) and methyl methacrylate (MMA). And also, the materials are copolymerized with ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent, photo polymerization initiator (2H2M) as the initiator. It is judged that the lenses of all combinations are optically excellent and thus have good compatibility. Measurement of the optical and physical characteristics of the manufactured hydrophilic ophthalmic polymer are different in each case. Especially VTMS with cobalt oxide nanoparticle increases the oxygen permeability by the addition of cobalt nanoparticles. These materials are considered to make synergy effect each other, so it can be used in functional hydrogel ophthalmic lenses.


The Eye ◽  
2020 ◽  
Vol 22 (129) ◽  
pp. 44-46
Author(s):  
Mark Eddleston

Optimum Infinite is a new GP contact lens material, with an oxygen permeability of 180 barrer and was launched by Contamac at the GSLS 2019. This article provides an insight into the development and characteristics of this breakthrough material.


2021 ◽  
Vol 21 (8) ◽  
pp. 4388-4393
Author(s):  
Min-Jae Lee ◽  
A-Young Sung

This research was conducted to synthesis and application for high oxygen permeable ophthalmic lens materials. 2-(Trimethylsiloxy)ethyl methacrylate (2T), 3-[Tris(trimethylsiloxy)silyl]propyl methacrylate (3T), [(1,1-Dimethyl-2-propynyl)oxy]trimethylsilane (TMS), Poly(ethylene glycol) methyl ether methacrylate (PEGMA), N-vinyl-2-pyrrolidone (NVP) and titanium carbide nanoparticles were used as additives for the basic combination of synthesized silicone monomer (SiD) and N,N-Dimethylacetamide (DMA). And also, the materials were copolymerized with ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent, azobisisobutyronitrile (AIBN) as the initiator. The copolymerization with a small amount of silane of about 1% increased the oxygen permeability to 30.3˜33.52(cm2/sec)·(mlO2/ml·mm Hg)·10−11, and in particular, the addition of titanium carbide nanoparticles was found to increase to 46.38 (cm2/sec)·(ml O2/ml·mm Hg)·10−11. Surface modification was possible with various wetting agents. Especially, simultaneous use with titanium carbide nanoparticles increased the wettability while maintaining water content. These materials are considered to make synergy effect each other, so it can be used in functional hydrogel ophthalmic lenses.


2008 ◽  
Vol 69 (4) ◽  
pp. 992-999 ◽  
Author(s):  
Hamid Javaherian Naghash ◽  
Sanaz Abbasi Dineh Kabudi ◽  
Ahmad Reza Momeni ◽  
Ahmad Reza Massah ◽  
Hamid Aliyan

2015 ◽  
Vol 6 (12) ◽  
pp. 2183-2187 ◽  
Author(s):  
F. Alves ◽  
I. Nischang

We prepared new and scalable, hybrid inorganic–organic step-growth hydrogels with polyhedral oligomeric silsesquioxane (POSS) network knot construction elements and hydrolytically degradable poly(ethylene glycol) (PEG) di-ester macromonomers by in situ radical-mediated thiol–ene photopolymerization.


Sign in / Sign up

Export Citation Format

Share Document