scholarly journals Influence of electrolyte additive of trimethylsilylisocyanate on properties of electrode with nanosilicon for lithium-ion batteries

2021 ◽  
Vol 12 (1) ◽  
pp. 67-78
Author(s):  
S. P. Kuksenko ◽  
◽  
H. O. Kaleniuk ◽  
Yu. O. Tarasenko ◽  
M. T. Kartel ◽  
...  

Even partial replacement of graphite in the anode of lithium-ion batteries with silicon can significantly increase their specific energy. But the issue is the insufficient life cycle of such batteries due to the accelerated degradation of the liquid organic electrolyte with traditional lithium hexafluorophosphate, especially at elevated temperatures. The subject of discussions and further research are the processes involving a natural oxide layer on the surface of silicon in the manufacture and electrochemical litiation–delitiation of Si-containing electrodes. Among the most promising areas for solving the issues of practical application of silicon are new additives to the electrolyte and polymeric binders for electrode masses. This paper demonstrates the capability of trimethylsilylisocyanate (with aminosilane and isocyanate functional groups) as an additive to a liquid organic electrolyte (LiPF6 / fluoroethylene carbonate + ethyl methyl carbonate + vinylene carbonate + ethylene sulfite) to scavenge the reactive HF and PF5 species that alleviates the thermal decomposition of fluoroethylene carbonate at elevated temperatures. This makes it possible to increase the electrochemical parameters of half-cells with a hybrid graphite–nanosilicon working electrode when using water-based binders – carboxymethylcellulose and styrene-butadiene rubber. The addition of trimethylsilylisocyanate in the electrolyte significantly improves the reversible capacity of hybrid electrodes and reduces the accumulated irreversible capacity during prolonged cycling at normal temperature and after exposure at 50 °C, therefore to be effective for use in high-energy lithium-ion batteries.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fuqiang An ◽  
Hongliang Zhao ◽  
Weinan Zhou ◽  
Yonghong Ma ◽  
Ping Li

Abstract Recently, high-energy density cells containing nickel-rich cathodes and silicon-based anodes have become a practical solution for increasing the driving range of electric vehicles. However, their long-term durability and storage performance is comparatively poor because of the unstable cathode-electrolyte-interphase (CEI) of the high-reactivity cathode and the continuous solid-electrolyte-interphase (SEI) growth. In this work, we study several electrolyte systems consisting of various additives, such as S-containing (1,3,2-dioxathiolane 2,2-dioxide (DTD), DTD + prop-1-ene-1,3-sultone (PES), methylene methanedisulfonate (MMDS)) and Si-containing (tris(trimethylsilyl) phosphate (TTSP) and tris(trimethylsilyl) borate (TMSB)) compounds, in comparison to the baseline electrolyte (BL = 1.0 M LiPF6 + 3:5:2 w-w:w EC: EMC: DEC + 0.5 wt% lithium difluoro(oxalato)borate (LiDFOB) + 2 wt% lithium bis(fluorosulfonyl)imide (LiFSI) + 2 wt% fluoroethylene carbonate (FEC) + 1 wt% 1,3-propane sultone (PS)). Generally, electrolytes with Si-containing additives, particularly BL + 0.5% TTSP, show a lower impedance increase in the full cell, better beginning-of-life (BOL) performance, less reversible capacity loss through long-term cycles and better storage at elevated temperatures than do electrolytes with S-containing additives. On the contrary, electrolytes with S-containing additives exhibit the advantage of low SEI impedance but yield a worse performance in the full cell than do those with Si-containing additives. The difference between two types of additives is attributed to the distinct function of the electrodes, which is characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS), which was performed on full cells and half cells with fresh and harvested electrodes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jinghui Ren ◽  
Zhenyu Wang ◽  
Peng Xu ◽  
Cong Wang ◽  
Fei Gao ◽  
...  

AbstractHigh-energy–density lithium-ion batteries (LIBs) that can be safely fast-charged are desirable for electric vehicles. However, sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density. Here we hypothesize that a cobalt vanadate oxide, Co2VO4, can be attractive anode material for fast-charging LIBs due to its high capacity (~ 1000 mAh g−1) and safe lithiation potential (~ 0.65 V vs. Li+/Li). The Li+ diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15 × 10–10 cm2 s−1, proving Co2VO4 a promising anode in fast-charging LIBs. A hexagonal porous Co2VO4 nanodisk (PCVO ND) structure is designed accordingly, featuring a high specific surface area of 74.57 m2 g−1 and numerous pores with a pore size of 14 nm. This unique structure succeeds in enhancing Li+ and electron transfer, leading to superior fast-charging performance than current commercial anodes. As a result, the PCVO ND shows a high initial reversible capacity of 911.0 mAh g−1 at 0.4 C, excellent fast-charging capacity (344.3 mAh g−1 at 10 C for 1000 cycles), outstanding long-term cycling stability (only 0.024% capacity loss per cycle at 10 C for 1000 cycles), confirming the commercial feasibility of PCVO ND in fast-charging LIBs.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5995
Author(s):  
Fernando Luna-Lama ◽  
Julián Morales ◽  
Alvaro Caballero

Disordered carbons derived from banana peel waste (BPW) were successfully obtained by employing a simple one-step activation/carbonization method. Different instrumental techniques were used to characterize the structural, morphological, and textural properties of the materials, including X-ray diffraction, thermogravimetric analysis, porosimetry and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The chemical activation with different porogens (zinc chloride, potassium hydroxide and phosphoric acid) could be used to develop functional carbonaceous structures with high specific surface areas and significant quantities of pores. The BPW@H3PO4 carbon exhibited a high specific surface area (815 m2 g−1), chemical stability and good conductivity for use as an anode in lithium-ion batteries. After 200 cycles, this carbon delivered a reversible capacity of 272 mAh g−1 at 0.2 C, showing a notable retention capacity and good cycling performance even at high current densities, demonstrating its effectiveness and sustainability as an anode material for high-energy applications in Li-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document