Amyloid Beta42 (Aβ42) Peptide Functionalized Iron Oxide Nanoparticles for Specific Targeting of SH-SY5Y Neuroblastoma Cells

2021 ◽  
Vol 21 (10) ◽  
pp. 5044-5050
Author(s):  
Yang Xia ◽  
Parasuraman Padmanabhan ◽  
Vimalan Vijayaragavan ◽  
Vadakke Matham Murukeshan ◽  
Balázs Gulyás

One of the most severe diseases threatening the ageing population is Alzheimer’s disease (AD). Recent studies found that the cellular uptake of extracellular amyloid beta (Aβ) peptides can lead to a build-up of intracellular Aβ in certain neuronal cells, which consequently lead to the onset of AD pathogenesis. It is therefore hypothesized that the detection of cells that are involved in such Aβ uptake could facilitate the early diagnosis of AD. In this work, a magnetofluorescent nanoprobe was prepared conjugating dye-labeled Aβ42 peptides with iron oxide nanoparticles (IONPs). When incubated with SH-SY5Y cells, the cellular uptake of Aβ42-IONPs was enhanced, compared to that of bare IONPs. Further, by labelling SH-SY5Y and HCT-116 cells, it was found that the Aβ42-IONPs are selectively targeting the neuronal cells. This enhanced and specific neuronal targeting is attributed to the cellular uptake of extracellular amyloid by SH-SY5Y cells. In addition, the MR relaxivities of the Aβ42-IONPs are preserved after the peptides functionalization. The results suggest that the Aβ42 functionalized magnetofluorescent IONPs can be used as a bimodal probe to interrogate the cellular uptake of amyloid peptides.

2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


2017 ◽  
Vol Volume 12 ◽  
pp. 3207-3220 ◽  
Author(s):  
Johanna Poller ◽  
Jan Zaloga ◽  
Eveline Schreiber ◽  
Harald Unterweger ◽  
Christina Janko ◽  
...  

2016 ◽  
Vol 5 (1) ◽  
pp. 235-247 ◽  
Author(s):  
Gözde Kiliç ◽  
Carla Costa ◽  
Natalia Fernández-Bertólez ◽  
Eduardo Pásaro ◽  
João Paulo Teixeira ◽  
...  

Iron oxide nanoparticles (ION) have been widely used in biomedical applications, for both diagnosis and therapy, due to their unique magnetic properties.


Sign in / Sign up

Export Citation Format

Share Document