Determination and correlation of refractive index of three binary and ternary systems containing hydroxyl ionic liquids/ water/methanol

2020 ◽  
Vol 10 (4) ◽  
pp. 469-478
Author(s):  
Gang Tian ◽  
Cong Yang ◽  
Xiaoxia Li ◽  
Guoxu He ◽  
Xiaojun Zhao ◽  
...  

In this paper, the refractive index of methanol + water, [HOEMIm]Cl + methanol, [HOEMMIm]Cl + methanol, [OHEN1,1,1]Cl + methanol, [HOEMIm]Cl + water, [OHEN1,1,1]Cl + water, [HOEMMIm]Cl + water, [OHEN1,1]Cl + water, [HOEMIm]Cl + methanol + water, [HOEMMIm]Cl + methanol + water and [OHEN1,1,1]Cl+methanol+water at different temperatures were determined by refractometer. The physical database of hydroxyl ionic liquids was enriched, and the excess refractive index of these systems was obtained by calculation. The relationship between the refractive index or the excess refractive index and the composition mole fraction were established at 20 °C.

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Hang Xu ◽  
Dandan Zhang

Viscosity and conductivity data of BMIMZnAcxCly(x=0,1,2,3;  y=3,2,1,0) ionic liquids were detected at temperature ranging from 323.15 to 353.15 K with an interval of 5 K. The conductivities of different ionic liquids at the same temperature followed the trend [BMIM][ZnAcCl2] > [BMIM][ZnAc2Cl] > [BMIM][ZnCl3] > [BMIM][ZnAc3]. The viscosities of different ionic liquid abided by the order [BMIM][ZnCl3] > [BMIM][ZnAcCl2] > [BMIM][ZnAc2Cl] > [BMIM][ZnAc3]. Acetate ion could reduce the viscosity of ionic liquids. The relationship between viscosity/conductivity and temperature obeyed the Arrhenius equation and Vogel-Fulcher-Tammann (VFT) equation very well with above 0.99 correlation coefficients.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Chao Liu ◽  
Youming Li ◽  
Yi Hou

Alkalinity determination is of crucial significance for the applications of basic ionic liquids with imidazolyl. In this work, the ionization constant pKb value and acid function H- values of ionic liquids synthesized were calculated by pH method and UV spectrum-Hammett method. The dissolution ratio of biomass in these ionic liquids was measured at different temperatures. Finally, the relationship between the alkalinity and structure of these ionic liquids was discussed, and the relationship between the alkalinity of ionic liquid and the dissolution mechanism biomass was also discussed. The results show that the basicity of carboxylate ionic liquids is determined mainly by their anions, whereas cations take some finely tuned roles. Furthermore, cations and anions are equally important and are involved in dissolution mechanisms.


2013 ◽  
Vol 58 (6) ◽  
pp. 1577-1588 ◽  
Author(s):  
Yanjie Li ◽  
Shu’ni Li ◽  
Quanguo Zhai ◽  
A. Marcilla ◽  
Yucheng Jiang ◽  
...  

2008 ◽  
Vol 44 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Ana Kostov ◽  
B. Friedrich ◽  
D. Zivkovic

Thermodynamic calculations of three binary Ti-based alloys: Ti-Al, Ti-Fe, and Al-Fe, as well as ternary alloy Ti-Al-Fe, is shown in this paper. Thermodynamic calculations involved thermodynamic determination of activities, coefficient of activities, partial and integral values for enthalpies and Gibbs energies of mixing and excess energies at different temperatures: 1873K, 2000K and 2073K, as well as calculated phase diagrams for the investigated binary and ternary systems. The FactSage is used for all thermodynamic calculations.


Author(s):  
Roberto I. Canales ◽  
Michael J. Lubben ◽  
Maria Gonzalez-Miquel ◽  
Joan F. Brennecke

Carbon dioxide has been shown to be an effective antisolvent gas for separating organic compounds from ionic liquids (ILs) by inducing a liquid–vapour to liquid–liquid–vapour transition. Using carbon dioxide, toluene can be separated from imidazolium, phosphonium and pyridinum cation-based ILs with the bis(trifluoromethylsulfonyl)imide anion, which is relatively hydrophobic and has a high toluene solubility. A new IL with relatively low viscosity is tested here for the same toluene separation process: 1- n -butylthiolanium bis(trifluoromethylsulfonyl)imide. Carbon dioxide solubility in binary and ternary systems containing toluene and 1- n -butylthiolanium bis(trifluoromethylsulfonyl)imide is measured at 298.15 and 313.15 K up to 7.4 MPa. Solubility behaviour in this IL is similar to imidazolium-based ILs with the same anion. However, phase split pressures are lower when 1- n -butylthiolanium bis (trifluoromethylsulfonyl)imide is used instead of 1- n -hexyl-3-methylimidazolium bis(trifluoromethylsu- lfonyl)imide at the same conditions of temperature and initial composition of toluene in the IL. Solubility data are modelled with the conductor-like screening model for real solvents combined with the Soave–Redlich–Kwong equation of state, which provides good qualitative results.


Sign in / Sign up

Export Citation Format

Share Document