Triggered drug release from hybrid thermoresponsive nanoparticles using near infrared light

Nanomedicine ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 219-234 ◽  
Author(s):  
Isabel Ortiz de Solorzano ◽  
Martin Prieto ◽  
Gracia Mendoza ◽  
Victor Sebastian ◽  
Manuel Arruebo

Aim: Developing hybrid poly(N-isopropylacrylamide)-based nanogels decorated with plasmonic hollow gold nanoparticles for on-demand drug delivery and their physico-chemical characterization, bupivacaine loading and release ability upon light irradiation, and in vitro cell viability. Materials & methods: Hollow gold nanoparticles were prepared by galvanic replacement reaction; poly(N-isopropylacrylamide)-based nanogels were synthesized via precipitation polymerization and their electrostatic coupling was accomplished using poly(allylamine hydrochloride) as cationic polyelectrolyte linker. Results & conclusion: Colloidal stability of the resulted hybrid nanovectors was demonstrated under physiological conditions together with their fast response and excellent heating efficiency after light stimulation, indicating their potential use as triggered drug-delivery vectors. Moreover, their influence on cell metabolism and cell cycle under subcytotoxic doses were studied showing excellent cytocompatibility.

2021 ◽  
Author(s):  
Yi-wei Sun ◽  
Hui Liang ◽  
Kun-qi Zong ◽  
Xin Che ◽  
Da-li Meng

Using NIR irradiation, gold nanomaterials loaded with natural products can achieve targeted release as well as better anti-tumor activity.


2018 ◽  
Vol 62 (1) ◽  
Author(s):  
Linda Bertel Garay ◽  
Fernando Martínez Ortega ◽  
Stelia Carolina Méndez-Sanchez

<p>Folic acid (FA) is used as a recognition molecule to achieve selective internalization in cancer cells. Here functionalized gold nanoparticles with folic acid (AuNP-FA) are proposed as suitable therapeutic agents for cervix cancer cells by photothermal damage. The functionalized gold nanoparticles with folic acid were synthesized by mixing hydrogen tetrachloroaurate with folic acid in a molar ratio of 0.56/1 under radiation of mercury lamp (λ<sub>max</sub>=254 nm). HeLa cells were incubated with AuNP-FA during 48 h, then were irradiated and the cytotoxicity was analyzed 12 h after irradiation. The AuNP-FA were dose-dependent cytotoxic under irradiation and not cytotoxic in the absence of radiation. The viability of cancer cells treated with functionalized and non-functionalized gold nanoparticles (AuNPs), with and without near infrared light at 808 nm, was measured by MTT assays. This work provides useful guidance toward the synthesis of biocompatible nanomaterials for biological applications.</p>


2021 ◽  
Author(s):  
Yanan Li ◽  
Wenting Song ◽  
Yumin Hu ◽  
Yun Xia ◽  
Zhen Li ◽  
...  

Abstract BackgroundBreast cancer is the fastest-growing cancer among females and the second leading cause of female death. At present, targeted antibodies combined with hyperthermia locally in tumor has been identified as a potential combination therapy to combat tumors. But in fact, the uniformly deep distribution of photosensitizer in tumor sites is still an urgent problem, which limited the clinical application. We reported an HER2-modified thermosensitive liposome (immunoliposome)-assisted complex by reducing gold nanocluster on the surface (GTSL-CYC-HER2) to obtain a new type of bioplasma resonance structured carrier. The HER2 decoration on the surface enhanced targeting to the breast cancer tumor site and forming irregular, dense, "petal-like" shells of gold nanoclusters. Due to the good photothermal conversion ability under near-infrared light (NIR) irradiation, the thermosensitive liposome released the antitumor Chinese traditional medicine, cyclopamine, accompanied with the degradation of gold clusters into 3-5nm nanoparticles which can accelerate renal metabolism of the gold clusters. With the help of cyclopamine to degrade the tumor associated matrix, this size-tunable gold wrapped immunoliposome was more likely to penetrate the deeper layers of the tumor, while the presence of gold nanoparticles makes GTSL-CYC-HER2 multimodal imaging feasible.ResultsThe prepared GTSL-CYC-HER2 had a size of 113.5 nm and displayed excellent colloidal stability, photo-thermal conversion ability and NIR-sensitive drug release. These GTSL-CYC-HER2 were taken up selectively by cancer cells in vitro and accumulated at tumour sites in vivo. As for the in vivo experiments, compared to the other groups, under near-infrared laser irradiation, the temperature of GTSL-CYC-HER2 rises rapidly to the phase transition temperature, and released the cyclopamine locally in the tumor. Then, the released cyclopamine destroyed the stroma of the tumor tissue while killing the tumor cells, which in turn increased the penetration of the liposomes in deep tumor tissues. Moreover, the GTSL-CYC-HER2 enhanced the performance of multimodal computed tomography (CT) and photothermal (PT) imaging and enabled chemo-thermal combination therapy.ConclusionsThis optically controlled biodegradable plasmonic resonance structures not only improves the safety of the inorganic carrier application in vivo, but also greatly improves the anti-tumor efficiency through the visibility of in vivo CT and PT imaging, as well as chemotherapy combined with hyperthermia, and provides a synergistic treatment strategy that can broaden the conventional treatment alone.


2016 ◽  
Vol 45 (12) ◽  
pp. 5101-5110 ◽  
Author(s):  
Huiting Bi ◽  
Yunlu Dai ◽  
Ruichan Lv ◽  
Chongna Zhong ◽  
Fei He ◽  
...  

A CuS–DOX NP drug delivery system was synthesized by conjugating carboxyl-functionalized copper sulfide nanoparticles (CuS NPs) and DOX through hydrazone bonds. The platform exhibits high in vitro and in vivo anti-cancer efficacy due to the combined chemo- and photothermal therapeutic effect upon 808 nm laser irradiation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoxia Song ◽  
Zhi Chen ◽  
Xue Zhang ◽  
Junfeng Xiong ◽  
Teng Jiang ◽  
...  

AbstractMagnetic micro/nanorobots attracted much attention in biomedical fields because of their precise movement, manipulation, and targeting abilities. However, there is a lack of research on intelligent micro/nanorobots with stimuli-responsive drug delivery mechanisms for cancer therapy. To address this issue, we developed a type of strong covalently bound tri-bead drug delivery microrobots with NIR photothermal response azobenzene molecules attached to their carboxylic surface groups. The tri-bead microrobots are magnetic and showed good cytocompatibility even when their concentration is up to 200 µg/mL. In vitro photothermal experiments demonstrated fast NIR-responsive photothermal property; the microrobots were heated to 50 °C in 4 min, which triggered a significant increase in drug release. Motion control of the microrobots inside a microchannel demonstrated the feasibility of targeted therapy on tumor cells. Finally, experiments with lung cancer cells demonstrated the effectiveness of targeted chemo-photothermal therapy and were validated by cell viability assays. These results indicated that tri-bead microrobots have excellent potential for targeted chemo-photothermal therapy for lung cancer cell treatment.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Matthew R. DeWitt ◽  
Allison M. Pekkanen ◽  
John Robertson ◽  
Christopher G. Rylander ◽  
Marissa Nichole Rylander

Single-walled carbon nanohorns (SWNHs) have significant potential for use in photothermal therapies due to their capability to absorb near infrared light and deposit heat. Additionally, their extensive relative surface area and volume makes them ideal drug delivery vehicles. Novel multimodal treatments are envisioned in which laser excitation can be utilized in combination with chemotherapeutic-SWNH conjugates to thermally enhance the therapeutic efficacy of the transported drug. Although mild hyperthermia (41–43 °C) has been shown to increase cellular uptake of drugs such as cisplatin (CDDP) leading to thermal enhancement, studies on the effects of hyperthermia on cisplatin loaded nanoparticles are currently limited. After using a carbodiimide chemical reaction to attach CDDP to the exterior surface of SWNHs and nitric acid to incorporate CDDP in the interior volume, we determined the effects of mild hyperthermia on the efficacy of the CDDP-SWNH conjugates. Rat bladder transitional carcinoma cells were exposed to free CDDP or one of two CDDP-SWNH conjugates in vitro at 37 °C and 42 °C with the half maximal inhibitory concentration (IC50) for each treatment. The in vitro results demonstrate that unlike free CDDP, CDDP-SWNH conjugates do not exhibit thermal enhancement at 42 °C. An increase in viability of 16% and 7% was measured when cells were exposed at 42 deg compared to 37 deg for the surface attached and volume loaded CDDP-SWNH conjugates, respectively. Flow cytometry and confocal microscopy showed a decreased uptake of CDDP-SWNH conjugates at 42 °C compared to 37 °C, revealing the importance of nanoparticle uptake on the CDDP-SWNH conjugate's efficacy, particularly when hyperthermia is used as an adjuvant, and demonstrates the effect of particle size on uptake during mild hyperthermia. The uptake and drug release studies elucidated the difference in viability seen in the drug efficacy studies at different temperatures. We speculate that the disparity in thermal enhancement efficacy observed for free drug compared to the drug SWNH conjugates is due to their intrinsic size differences and, therefore, their mode of cellular uptake: diffusion or endocytosis. These experiments indicate the importance of tuning properties of nanoparticle-drug conjugates to maximize cellular uptake to ensure thermal enhancement in nanoparticle mediated photothermal-chemotherapy treatments.


2021 ◽  
Author(s):  
Biswajit Roy ◽  
Rakesh Mengji ◽  
Samrat Roy ◽  
Bipul Pal ◽  
Avijit Jana ◽  
...  

In recent times, organelle-targeted drug delivery systems gained tremendous attention due to the site specific delivery of active drug molecules resulting in enhanced bioefficacy. In this context, the phototriggered drug delivery system (DDS) for releasing an active molecule is superior as it provides spatial and temporal control over the release. So far, near infrared (NIR) light responsive organelle targeted DDS has not yet been developed. Hence, we introduced a two-photon NIR-light responsive lysosome targeted ʽAIE + ESIPTʼ active single component DDS based on naphthalene chromophore. The Two-photon absorption cross-section of our DDS is 142 GM at 850 nm. The DDS was converted into pure organic nanoparticles for biological applications. Our nano-DDS is capable of selective targeting, AIE-luminogenic imaging, and drug release within the lysosome. In vitro studies using cancerous cell lines showed that our single component photoresponsive nanocarrier exhibited enhanced cytotoxicity and real-time monitoring ability of the drug release.


2010 ◽  
Vol 15 (23-24) ◽  
pp. 1105-1105
Author(s):  
P. Sánchez-Moreno ◽  
H. Boulaiz ◽  
J.A. Marchal ◽  
J.L. Ortega-Vinuesa ◽  
J.M. Peula García ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document