The Permeability of Poly(lactic-co-glycolic acid) Nanoparticles Loaded with Psoralen to Human Skin in Medical Chemotherapy

2020 ◽  
Vol 12 (2) ◽  
pp. 163-169
Author(s):  
Liangming Li ◽  
Aihua Yang

Objective: In order to improve the clinical efficacy and reduce the side effects, PLGA nanoparticles loaded with psoralen for external use were prepared, and the permeation, distribution and influencing factors of PLGA nanoparticles delivered via microneedles in human skin were investigated. Methods: The psoralen nanoparticles were prepared by solvent replacement and interfacial polymer deposition. The percutaneous process of PLGA nanoparticles loaded with psoralen was observed with Franz diffusion cell and laser confocal microscope. The distribution of the nanoparticles in each cortex was quantified by HPLC. Results: The retention of PLGA nanoparticles delivered via microneedles in the skin was significantly increased (P < 0.01), and the retention in the epidermis was greater than that in the dermis (P < 0.01); the release rate in vitro was 75.58% after 24 hours, and less than 0.5% after 48 hours. Conclusion: PLGA nanoparticles loaded with psoralen can effectively promote the penetration and distribution of PLGA nanoparticles in human skin after being delivered to human skin through microneedles. With the increase of depth, the amount of PLGA nanoparticles gradually decreases, and with the extension of time, the penetration promotion effect of microneedles is more obvious. PLGA nanoparticles loaded with psoralen may become one of the clinical methods to improve the photochemotherapy of psoralen and develop a new transdermal drug delivery system to reduce its toxic and side effects.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Z. Zhang ◽  
X. Wang ◽  
X. Chen ◽  
Y. Wo ◽  
Y. Zhang ◽  
...  

To investigate the ability of transfersomal gel carrying the antiscarring agent (5-FU) to permeate hypertrophic scarsin vivoandin vitro, scar permeation studies were performed after the agent was labeled with the fluorescent agent, rhodamine 6GO. Laser confocal microscope was employed to dynamically observe the effects of transfersomal gel carrying 5-FU at different time points. High-performance liquid chromatography (HPLC) was used to analyze the contents of the agent in the scar tissues at different hours after administration. Scar elevation index (SEI) was used to evaluate the changes of the ear scar models in rabbits. Compared with the PBS gel of 5-FU, the transfersomal gel displayed greater permeation rate and depth, as well as a higher content retention of the agent in scar tissues. Local administrations of the agent for some certain periods effectively inhibited the hyperplasia of ear scars in rabbits. Transfersomes can be chosen as a potential transdermal drug delivery system.


2019 ◽  
Vol 20 (15) ◽  
pp. 3644 ◽  
Author(s):  
Noriaki Nagai ◽  
Fumihiko Ogata ◽  
Mizuki Yamaguchi ◽  
Yuya Fukuoka ◽  
Hiroko Otake ◽  
...  

This study designed the transdermal formulations containing indomethacin (IMC)—1% IMC was crushed with 0.5% methylcellulose and 5% 2-hydroxypropyl-β-cyclodextrin by the bead mill method, and the milled IMC was gelled with or without 2% l-menthol (a permeation enhancer) by Carbopol® 934 (without menthol, N-IMC gel; with menthol, N-IMC/MT gel). In addition, the drug release, skin penetration and percutaneous absorption of the N-IMC/MT gel were investigated. The particle sizes of N-IMC gel were approximately 50–200 nm, and the combination with l-menthol did not affect the particle characterization of the transdermal formulations. In an in vitro experiment using a Franz diffusion cell, the skin penetration in N-IMC/MT gel was enhanced than the N-IMC gel, and the percutaneous absorption (AUC) from the N-IMC/MT gel was 2-fold higher than the N-IMC gel. On the other hand, the skin penetration from the N-IMC/MT gel was remarkably attenuated at a 4 °C condition, a temperature that inhibits all energy-dependent endocytosis. In conclusion, this study designed transdermal formulations containing IMC solid nanoparticles and l-menthol, and found that the combination with l-menthol enhanced the skin penetration of the IMC solid nanoparticles. In addition, the energy-dependency of the skin penetration of IMC solid nanoparticles was demonstrated. These findings suggest the utility of a transdermal drug delivery system to provide the easy application of solid nanoparticles (SNPs).


Author(s):  
Galih Pratiwi ◽  
Susi Susanti ◽  
Shaum Shiyan

Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) class of drugs, and oral use can cause side effects. Transdermal patch dosage forms are useful for minimizing side effects on oral administration. Transdermal patches are formulated using a special membrane that can control drug release in the matrix system. This study was intended to determine the characteristics of the resulting patch, the optimum composition of the formula, and the profile of the release of transdermal ibuprofen release. The film matrix optimization on the ibuprofen patch formulation uses design of experiment (DoE) approach using factorial design 22. The mixture of polyvinyl pyrrolidone (PVC) and hydroxypropyl methylcellulose (HPMC) components gives a pleasant texture, and the release results in vitro show a proper and controlled release of the ibuprofen patch. Based on the research, it can be concluded that the patch has excellent characteristics with a good texture so that the development time is long with the optimum formula of chitosan and HPMC, as well as having a proper and controlled release profile.


Author(s):  
L.X. Oakford ◽  
S.D. Dimitrijevich ◽  
R. Gracy

In intact skin the epidermal layer is a dynamic tissue component which is maintained by a basal layer of mitotically active cells. The protective upper epidermis, the stratum corneum, is generated by differentiation of the suprabasal keratinocytes which eventually desquamate as anuclear comeocytes. A similar sequence of events is observed in vitro in the non-contracting human skin equivalent (HSE) which was developed in this lab (1). As a part of the definition process for this model of living skin we are examining its ultrastructural features. Since desmosomes are important in maintaining cell-cell interactions in stratified epithelia their distribution in HSE was examined.


1977 ◽  
Vol 37 (01) ◽  
pp. 154-161 ◽  
Author(s):  
B. A Janik ◽  
S. E Papaioannou

SummaryUrokinase, streptokinase, Brinase, trypsin, and SN 687, a bacterial exoprotease, have been evaluated in an ex vivo assay system. These enzymes were injected into rabbits and the fibrinolytic activity as well as other coagulation parameters were measured by in vitro techniques. Dose-response correlations have been made using the euglobulin lysis time as a measure of fibrinolytic activity and the 50% effective dose has been determined for each enzyme. Loading doses, equal to four times the 50% effective dose, were administered to monitor potential toxicity revealing that Brinase, trypsin, and SN 687 were very toxic at this concentration.Having established the 50% effective dose for each enzyme, further testing was conducted where relevant fibrinolytic and coagulation parameters were measured for up to two days following a 50% effective dose bolus injection of each enzyme. Our results have demonstrated that urokinase and streptokinase are plasminogen activators specifically activating the rabbit fibrinolytic system while Brinase, trypsin and SN 687 increase the general proteolytic activity in vivo.The advantages of this ex vivo assay system for evaluating relative fibrinolytic potencies and side effects for plasminogen activators and fibrinolytic proteases have been discussed.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2020 ◽  
Vol 17 ◽  
Author(s):  
Akhlesh Kumar Jain ◽  
Hitesh Sahu ◽  
Keerti Mishra ◽  
Suresh Thareja

Aim: To design D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for site specific delivery. Background: Liver cancer is the third leading cause of death in world and fifth most often diagnosed cancer is the major global threat to public health. Treatment of liver cancer with conventional method bears several side effects, thus to undertake these side effects as a formulation challenge, it is necessary to develop novel target specific drug delivery system for the effective and better localization of drug into the proximity of target with restricting the movement of drug in normal tissues. Objective: To optimize and characterize the developed D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for effective treatment of liver cancer. Materials and methods: 5-FU loaded JFSSNPs were prepared and optimized formulation had higher encapsulation efficiency were conjugated with D-Mannose. These formulations were characterized for size, morphology, zeta potential, X-Ray Diffraction, and Differential Scanning Calorimetry. Potential of NPs were studied using in vitro cytotoxicity assay, in vivo kinetic studies and bio-distribution studies. Result and discussion: 5-Fluorouracil loaded NPs had particle size between 336 to 802nm with drug entrapment efficiency was between 64.2 to 82.3%. In XRD analysis, 5-FU peak was diminished in the diffractogram, which could be attributed to the successful incorporation of drug in amorphous form. DSC study suggests there was no physical interaction between 5- FU and Polymer. NPs showed sustained in vitro 5-FU release up to 2 hours. In vivo, mannose conjugated NPs prolonged the plasma level of 5-FU and assist selective accumulation of 5-FU in the liver (vs other organs spleen, kidney, lungs and heart) compared to unconjugated one and plain drug. Conclusion: In vivo, bio-distribution and plasma profile studies resulted in significantly higher concentration of 5- Fluorouracil liver suggesting that these carriers are efficient, viable, and targeted carrier of 5-FU treatment of liver cancer.


2020 ◽  
Vol 15 ◽  
Author(s):  
Manasi M. Chogale ◽  
Sujay S. Gaikwad ◽  
Savita P. Kulkarni ◽  
Vandana B. Patravale

Background: Tuberculosis (TB) continues to be among the leading causes for high mortality among developing countries. Though a seemingly effective treatment regimen against TB is in place, there has been no significant improvement in the therapeutic rates. This is primarily owing to the high drug doses, their associated sideeffects, and prolonged treatment regimen. Discontinuation of therapy due to the severe side effects of the drugs results in the progression of the infection to the more severe drug-resistant TB. Objectives: Reformulation of the current existing anti TB drugs into more efficient dosage forms could be an ideal way out. Nanoformulations have been known to mitigate the side effects of toxic, high-dose drugs. Hence, the current research work involves the formulation of Isoniazid (INH; a first-line anti TB molecule) loaded chitosan nanoparticles for pulmonary administration. Methods: INH loaded chitosan nanoparticles were prepared by ionic gelation method using an anionic crosslinker. Drugexcipient compatibility was evaluated using DSC and FT-IR. The formulation was optimized on the principles of Qualityby-Design using a full factorial design. Results: The obtained nanoparticles were spherical in shape having an average size of 620±10.97 nm and zeta potential +16.87±0.79 mV. Solid state characterization revealed partial encapsulation and amorphization of INH into the nanoparticulate system. In vitro release study confirmed an extended release of INH from the system. In vitro cell line based safety and efficacy studies revealed satisfactory results. Conclusion: The developed nanosystem is thus an efficient approach for antitubercular therapy.


2013 ◽  
Vol 13 (3) ◽  
pp. 523-530 ◽  
Author(s):  
Augusto Pessina ◽  
Valentina Cocce ◽  
Arianna Bonomi ◽  
Loredana Cavicchini ◽  
Francesca Sisto ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document