scholarly journals Polyclonal immunoglobulin secretion in patients with common variable immunodeficiency using monoclonal B cell differentiation factors.

1984 ◽  
Vol 74 (6) ◽  
pp. 2115-2120 ◽  
Author(s):  
L Mayer ◽  
S M Fu ◽  
C Cunningham-Rundles ◽  
H G Kunkel
2021 ◽  
Author(s):  
Javier Rodriguez-Ubreva ◽  
Anna Arutyunyan ◽  
Marc Jan Bonder ◽  
Lucia Del Pino-Molina ◽  
Stephen Clark ◽  
...  

Common variable immunodeficiency (CVID), the most prevalent symptomatic primary immunodeficiency, is characterized by impaired terminal B-cell differentiation and defective antibody responses. Incomplete genetic penetrance and a wide range of phenotypic expressivity in CVID suggest the participation of additional pathogenic mechanisms. Monozygotic (MZ) twins discordant for CVID are uniquely valuable for studying the contribution of epigenetics to the disease. We used single-cell epigenomics and transcriptomics to create a cell census of naive-to-memory B cell differentiation in a pair of CVID-discordant MZ twins. Our analysis identifies DNA methylation, chromatin accessibility and transcriptional defects in memory B cells that mirror defective cell-cell communication defects following activation. These findings were validated in a cohort of CVID patients and healthy donors. Our findings provide a comprehensive multi-omics map of alterations in naive-to-memory B-cell transition in CVID and reveal links between the epigenome and immune cell cross-talk. Our resource, publicly available at the Human Cell Atlas, paves the way for future diagnosis and treatments of CVID patients.


2006 ◽  
Vol 119 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Jean-François Viallard ◽  
Patrick Blanco ◽  
Marc André ◽  
Gabriel Etienne ◽  
François Liferman ◽  
...  

Blood ◽  
2008 ◽  
Vol 111 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Claudia Wehr ◽  
Teemu Kivioja ◽  
Christian Schmitt ◽  
Berne Ferry ◽  
Torsten Witte ◽  
...  

The heterogeneity of common variable immunodeficiency (CVID) calls for a classification addressing pathogenic mechanisms as well as clinical relevance. This European multicenter trial was initiated to develop a consensus of 2 existing classification schemes based on flowcytometric B-cell phenotyping and the clinical course. The clinical evaluation of 303 patients with the established diagnosis of CVID demonstrated a significant coincidence of granulomatous disease, autoimmune cytopenia, and splenomegaly. Phenotyping of B-cell subpopulations confirmed a severe reduction of switched memory B cells in most of the patients that was associated with a higher risk for splenomegaly and granulomatous disease. An expansion of CD21low B cells marked patients with splenomegaly. Lymphadenopathy was significantly linked with transitional B-cell expansion. Based on these findings and pathogenic consideration of B-cell differentiation, we suggest an improved classification for CVID (EUROclass), separating patients with nearly absent B cells (less than 1%), severely reduced switched memory B cells (less than 2%), and expansion of transitional (more than 9%) or CD21low B cells (more than 10%). Whereas the first group contains all patients with severe defects of early B-cell differentiation, severely reduced switched memory B cells indicate a defective germinal center development as found in inducible constimulator (ICOS) or CD40L deficiency. The underlying defects of expanded transitional or CD21low B cells remain to be elucidated. This trial is re-gistered at http://www.uniklinik-freiburg.de/zks/live/uklregister/Oeffentlich.html as UKF000308.


1993 ◽  
Vol 13 (7) ◽  
pp. 3929-3936
Author(s):  
T D Randall ◽  
F E Lund ◽  
J W Brewer ◽  
C Aldridge ◽  
R Wall ◽  
...  

Interleukin-5 (IL-5) and IL-6 have both been reported to act as B-cell differentiation factors by stimulating activated B cells to secrete antibody. However, it has not been possible to directly compare the effects of these two lymphokines because of the lack of a suitable B-cell line capable of responding to both. We have identified a clonal, inducible B-cell lymphoma, CH12, that has this property. Both IL-5 and IL-6 can independently stimulate increases in steady-state levels of immunoglobulin and J-chain mRNA and proteins, and they both induce the differentiation of CH12 into high-rate antibody-secreting cells. Nevertheless, there are significant differences in the activities of these two lymphokines. First, while IL-6 acts only as a differentiation factor, IL-5 also augments the proliferation of CH12 cells. Second, the differentiation stimulated by IL-5 but not by IL-6 is partially inhibited by IL-4. Inhibition of IL-5-induced differentiation was not at the level of IL-5 receptor expression, since IL-4 did not inhibit IL-5-induced proliferation. Third, IL-5 but not IL-6 stimulated increased mouse mammary tumor proviral gene expression in CH12 cells. These results demonstrate that while both IL-5 and IL-6 may act as differentiation factors for B cells, they induce differentiation by using at least partially distinct molecular pathways. Our results also establish that B cells characteristic of a single stage of development can independently respond to IL-4, IL-5, and IL-6.


1993 ◽  
Vol 13 (7) ◽  
pp. 3929-3936 ◽  
Author(s):  
T D Randall ◽  
F E Lund ◽  
J W Brewer ◽  
C Aldridge ◽  
R Wall ◽  
...  

Interleukin-5 (IL-5) and IL-6 have both been reported to act as B-cell differentiation factors by stimulating activated B cells to secrete antibody. However, it has not been possible to directly compare the effects of these two lymphokines because of the lack of a suitable B-cell line capable of responding to both. We have identified a clonal, inducible B-cell lymphoma, CH12, that has this property. Both IL-5 and IL-6 can independently stimulate increases in steady-state levels of immunoglobulin and J-chain mRNA and proteins, and they both induce the differentiation of CH12 into high-rate antibody-secreting cells. Nevertheless, there are significant differences in the activities of these two lymphokines. First, while IL-6 acts only as a differentiation factor, IL-5 also augments the proliferation of CH12 cells. Second, the differentiation stimulated by IL-5 but not by IL-6 is partially inhibited by IL-4. Inhibition of IL-5-induced differentiation was not at the level of IL-5 receptor expression, since IL-4 did not inhibit IL-5-induced proliferation. Third, IL-5 but not IL-6 stimulated increased mouse mammary tumor proviral gene expression in CH12 cells. These results demonstrate that while both IL-5 and IL-6 may act as differentiation factors for B cells, they induce differentiation by using at least partially distinct molecular pathways. Our results also establish that B cells characteristic of a single stage of development can independently respond to IL-4, IL-5, and IL-6.


1984 ◽  
Vol 14 (11) ◽  
pp. 1021-1027 ◽  
Author(s):  
Malcolm K. Brenner ◽  
Margaret E. North ◽  
Hakikat R. Chadda ◽  
Christine A. Newton ◽  
Mirek Malkovsky ◽  
...  

1985 ◽  
Vol 15 (6) ◽  
pp. 606-610 ◽  
Author(s):  
Anna Vyakarnam ◽  
Malcolm K. Brenner ◽  
Joyce E. Reittie ◽  
Clare H. Houker ◽  
Peter J. Lachmann

Sign in / Sign up

Export Citation Format

Share Document