scholarly journals Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues.

1992 ◽  
Vol 89 (1) ◽  
pp. 244-253 ◽  
Author(s):  
L B Jakeman ◽  
J Winer ◽  
G L Bennett ◽  
C A Altar ◽  
N Ferrara
1998 ◽  
Vol 9 (6) ◽  
pp. 1032-1044 ◽  
Author(s):  
M Simon ◽  
W Röckl ◽  
C Hornig ◽  
E F Gröne ◽  
H Theis ◽  
...  

Vascular endothelial growth factor (VEGF) has an important function in renal vascular ontogenesis and is constitutively expressed in podocytes of the adult kidney. The ability of VEGF to be chemotactic for monocytes and to increase the activity of collagenase and plasminogen activator may have implications for renal development and renal disease. In humans, the cellular actions of VEGF depend on binding to two specific receptors: Flt-1 and KDR. The aims of this study were: (1) to localize VEGF receptor proteins in human renal ontogenesis; (2) to quantify VEGF binding in human fetal and adult kidney; and (3) to dissect the binding into its two known components: the KDR and Flt-1 receptors. The latter aim was achieved by competitive binding of VEGF and placenta growth factor-2, which only binds to Flt-1. Quantification of 125I-VEGF binding sites was performed by autoradiography and computerized densitometry. By double-label immunohistochemistry, VEGF receptor proteins were localized solely to endothelial cells of preglomerular vessels, glomeruli, and postglomerular vessels. In developing glomeruli, VEGF receptor protein appeared as soon as endothelial cells were positive for von Willebrand factor. Specific 125I-VEGF binding could be localized to renal arteries and veins, glomeruli, and the tubulointerstitial capillary network in different developmental stages. Affinity (Kd) of adult (aK) and fetal (fK) kidneys was: Kd: glomeruli 38.6 +/- 11.2 (aK, n = 5), 36.3 +/- 7.1 (fK, n = 5); cortical tubulointerstitium 19.4 +/- 2.6 (aK, n = 5), 11.6 +/- 7.0 (fK, n = 5) pmol. Placenta growth factor-2 displaced VEGF binding in all renal structures by approximately 60%. VEGF receptor proteins thus were found only in renal endothelial cells. A coexpression of both VEGF binding sites could be shown, with Flt-1 demonstrating the most abundant VEGF receptor binding sites in the kidney. These studies support the hypothesis of a function for VEGF in adult kidney that is independent of angiogenesis.


Author(s):  
Kamil Wartalski ◽  
Gabriela Gorczyca ◽  
Jerzy Wiater ◽  
Zbigniew Tabarowski ◽  
Małgorzata Duda

AbstractEndothelial cells (ECs), the primary component of the vasculature, play a crucial role in neovascularization. However, the number of endogenous ECs is inadequate for both experimental purposes and clinical applications. Porcine ovarian putative stem cells (poPSCs), although not pluripotent, are characterized by great plasticity. Therefore, this study aimed to investigate whether poPSCs have the potential to differentiate into cells of endothelial lineage. poPSCs were immunomagnetically isolated from postnatal pig ovaries based on the presence of SSEA-4 protein. Expression of mesenchymal stem cells (MSCs) markers after pre-culture, both at the level of mRNA: ITGB1, THY, and ENG and corresponding protein: CD29, CD90, and CD105 were significantly higher compared to the control ovarian cortex cells. To differentiate poPSCs into ECs, inducing medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid, and heparin was applied. After 14 days, poPSC differentiation into ECs was confirmed by immunofluorescence staining for vascular endothelial cadherin (VECad) and vascular endothelial growth factor receptor-2 (VEGFR-2). Semi-quantitative WB analysis of these proteins confirmed their high abundance. Additionally, qRT-PCR showed that mRNA expression of corresponding marker genes: CDH5, KDR was significantly higher compared with undifferentiated poPSCs. Finally, EC functional status was confirmed by the migration test that revealed that they were capable of positive chemotaxis, while tube formation assay demonstrated their ability to develop capillary networks. In conclusion, our results provided evidence that poPSCs may constitute the MSC population in the ovary and confirmed that they might be a potential source of ECs for tissue engineering.


Endocrinology ◽  
2007 ◽  
Vol 149 (1) ◽  
pp. 253-260 ◽  
Author(s):  
Noriyuki Takahashi ◽  
Masanori T. Itoh ◽  
Bunpei Ishizuka

The intermediate filament protein nestin was originally found to be expressed in neuronal progenitor cells, but recent studies have shown that other cell types, including endocrine and vascular endothelial cells, express nestin. In the present study, we examined the expression and localization of nestin in the ovaries of developing, peripubertal, and adult rats. RT-PCR and Western blot analyses revealed that nestin mRNA and proteins were expressed in adult rat ovaries. Immunohistochemical analyses using adult rat ovaries showed that nestin was mainly localized to capillary endothelial cells of theca interna in follicles with more than two layers of granulosa cells and that its expression increased with follicle growth. Ontogenetically, ovarian nestin expression started at the peripubertal period when the first gonadotropin surge occurs. To test the possibility that gonadotropins induce nestin expression, prepubertal (postnatal d 21) rats were sc injected with equine chorionic gonadotropin (eCG) and/or human chorionic gonadotropin (hCG). A single injection of hCG, but not eCG, was sufficient to induce nestin expression in follicles, mainly in capillary endothelial cells of theca interna. Furthermore, pretreatment with an inhibitor of vascular endothelial growth factor receptor prevented the induction of the nestin expression by hCG. These findings demonstrate that the endogenous LH surge induces nestin expression in capillary endothelial cells of theca interna via the vascular endothelial growth factor signaling pathway. Nestin may be involved in angiogenesis in growing follicles, which is followed by follicle maturation and subsequent ovulation.


Sign in / Sign up

Export Citation Format

Share Document