scholarly journals Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta.

1993 ◽  
Vol 92 (6) ◽  
pp. 2814-2820 ◽  
Author(s):  
T Ikeda ◽  
T Shirasawa ◽  
Y Esaki ◽  
S Yoshiki ◽  
K Hirokawa
2016 ◽  
Vol 94 (9) ◽  
pp. 668-671
Author(s):  
S. V. Magaeva ◽  
A. A. Kubatiev ◽  
E. A. Shirokov ◽  
V. B. Simonenko

The article reports results of clinical studies aimed to elucidate the influence of medicines on the size and density of atherosclerotic plaques in the walls of coronary and cerebral arteries. The phenomenon of regression of atherosclerotic lesions in the survivors of Leningrad siege during a long period of starvation is analyzed. The influence of inhibitors of angiotensinconverting enzyme on apoptosis of smooth muscle and foam cells of atherosclerotic plaques in the sanological mechanisms of atherosclerosis is discussed. The concept of natural regression of atherosclerosis is formulated and the necessity of development of the methods for is pharmacological activation are formulated.


Author(s):  
T. M. Murad ◽  
H. A. I. Newman ◽  
K. F. Kern

The origin of lipid containing cells in atheromatous lesion has been disputed. Geer in his study on atheromatous lesions of rabbit aorta, suggested that the early lesion is composed mainly of lipid-laden macrophages and the later lesion has a mixed population of macrophages and smooth muscle cells. Parker on the other hand, was able to show evidence that the rabbit lesion is primarily composed of lipid-laden cells of smooth muscle origin. The above studies and many others were done on an intact lesion without any attempt of cellular isolation previous to their ultrastructural studies. Cell isolation procedures have been established for atherosclerotic lesions through collagenase and elastase digestion Therefore this procedure can be utilized to identify the cells involved in rabbit atheroma.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Yuhuang Li ◽  
Hong Jin ◽  
Ljubica Perisic ◽  
Ekaterina Chernogubova ◽  
Alexandra Bäcklund ◽  
...  

Background: Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators in various biological processes and diseases. Here we sought to identify and functionally characterize the lncRNA MIAT as a novel regulator in atherosclerotic plaque stability. Methods and results: We profiled RNA transcript expression in patients with advanced atherosclerotic lesions from the Biobank of Karolinska Endarterectomies (BiKE). By microarray analysis, lncRNA MIAT was identified as one of the most highly up-regulated non-coding RNAs in carotid plaques compared to iliac artery controls, which was confirmed by qRT-PCR and in situ hybridization. Additional in silico analysis indicated a substantial positive correlation of MIAT with markers of inflammation, apoptosis and matrix degradation in carotid plaques. Experimental knock-down of MIAT, utilizing site-specific antisense oligonucleotides (LNA-GapmeRs) not only markedly decreased proliferation and migration rates of cultured human carotid artery smooth muscle cells (hCASMCs), but also increased their levels of apoptosis. In addition, MIAT inhibition significantly impaired oxidized LDL (oxLDL) uptake of murine peritoneal as well as human monocyte-differentiated macrophages in vitro. In contrast, induction of MIAT expression by lipoprotein-a (LPa) treatment, displayed the opposite effect. Conditioned medium from macrophage cultures after MIAT knock-down substantially decreased hCASMC proliferation, indicating a potential involvement of MIAT in macrophage-SMC interactions during advanced stages of atherosclerosis. Conclusion: The lncRNA MIAT is a novel regulator of cellular processes in atherosclerosis and plaque stability, which influences SMC proliferation and apoptosis and interacts with disease-triggering macrophages.


2003 ◽  
Vol 44 (8) ◽  
pp. 1453-1461 ◽  
Author(s):  
Catherine M. Desrumaux ◽  
Puiying A. Mak ◽  
William A. Boisvert ◽  
David Masson ◽  
Dwayne Stupack ◽  
...  

2010 ◽  
Vol 67 (12) ◽  
pp. 959-964 ◽  
Author(s):  
Irena Tanaskovic ◽  
Aleksandra Mladenovic-Mihailovic ◽  
Slavica Usaj-Knezevic ◽  
Vesna Stankovic ◽  
Aleksandar Aleksic ◽  
...  

Background/Aim. The main complication of the atherosclerotic abdominal aortic aneurism (AAA) is her rupture that begins with lesion in intima and rupture. The purpose of this work was to determine immunocytochemical and morphofunctional characteristics of the cells in aortic wall in ruptured atherosclerotic abdominal aortic aneurysm. Method. During the course of this study, 20 samples of atherosclerotic AAA were analyzed, all of them obtained during authopsy. The samples were fixed in 4% formalin and embedded in paraffin. Sections of 5 ?m thickness were stained histochemically (of Heidenhain azan stain and Periodic acid Schiff - PAS stain) and immunocytochemically using a DAKO LSAB+/HRP technique to identify ?-smooth muscle actin (?-SMA), vimentin, myosin heavy chains (MHC), desmin, S-100 protein, CD45 and CD68 (DAKO specification). Results. The results of our study showed that ruptured atherosclerotic AAA is characterized by a complete absence of endothelial cells, the disruption of basal membrane and internal elastic lamina, as well as a presence of the remains of hypocellular complicated atherosclerotic lesion in intima. On the plaque margins, as well as in the media, smooth muscle cells (SMCs) are present, which express a ?-SMA and vimentin (but without MHC or desmin expression), as well as leukocyte infiltration, and a large number of foam cells. Some of the foam cells show a CD68-immunoreactivity, while the others show vimentin- and S-100 protein-immunoreactivity. Media is thinned out with a disorganized elastic lamellas, while adventitia is characterized by inflammatory inflitrate (infection). Conclusion. Rupture of aneurysm occurs from the primary intimal disruption, which spreads into thinned out media and adventitia. Rupture is caused by unstable atherom, hypocellularity, loss of contractile characteristics of smooth muscle cells in intima and media, neovascularization of the media, as well as by the activity of the macrophages in the lesion.


2000 ◽  
Vol 95 (2) ◽  
pp. 106-113 ◽  
Author(s):  
Florian Bea ◽  
Harald Bär ◽  
Lisa Watson ◽  
Erwin Blessing ◽  
Wolfgang Kübler ◽  
...  

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Laura S Shankman ◽  
Olga A Cherepanova ◽  
Delphine Gomez ◽  
Gary K Owens

The bulk of life threatening thrombotic events have been associated with disruption of the fibrous cap, an atheroprotective layer of smooth muscle α-actin positive (ACTA2+) cells that form around the plaque, and the presence of a large foam cell-laden necrotic core within the plaque. Despite the overwhelming research demonstrating that ACTA2+ cells are beneficial for plaque stability, and cells positive for macrophage-markers are detrimental, there are major ambiguities regarding the origins of these cells, and their role in lesion stability. To clearly define the contribution of smooth muscle cells (SMCs) within atherosclerotic lesions, we generated SMC specific lineage tracing Apoe-/- mice containing a SM myosin heavy chain ( Myh11 ) tamoxifen-inducible cre-recombinase gene and a floxed STOP ROSA eYFP gene ( Myh11 YFP ApoE-/- mice) thus allowing activation of eYFP exclusively in fully differentiated SMCs before the onset of atherosclerosis and subsequent determination of the fate of these cells and their progeny irrespective of continued expression of MYH11 or other SMC marker genes. Remarkably, our results reveal that 86% of SMCs cannot be identified using traditional SMC markers, such as ACTA2, and 23% of presumed macrophages (LGALS3+ cells) are derived from SMC origins. The last finding was confirmed in human coronary atheromas using the ISH-PLA approach. SMC specific knockout (KO) of the pluripotency factor Klf4 in Myh11 YFP ApoE-/- mice did not alter the frequency of phenotypically modulated (ACTA2-eYFP+) SMCs within atherosclerotic lesions of mice fed a high fat diet for 18 weeks, however, decreased the number of ACTA2-eYFP+ SMCs that expressed LGALS3, and increased several indices of plaque stability, suggesting a detrimental role for KLF4 in SMCs within atherosclerotic lesions. Conversely, SMC specific Oct4 KO resulted in a dramatic reduction in the number of ACTA2-eYFP+ SMCs within the lesion with marked decreases in indices of plaque stability. In summary results show that the majority of SMC-derived cells within advanced atherosclerotic lesions cannot be identified using conventional SMC marker genes, and that phenotypic switching of SMC during atherogenesis is differentially regulated by the pluripotency factors KLF4 and OCT4.


Sign in / Sign up

Export Citation Format

Share Document