scholarly journals Relations between Temperature and Residential Natural Gas Consumption in the Central and Eastern United States

2007 ◽  
Vol 46 (11) ◽  
pp. 1993-2013 ◽  
Author(s):  
Reed P. Timmer ◽  
Peter J. Lamb

Abstract The increased U.S. natural gas price volatility since the mid-to-late-1980s deregulation generally is attributed to the deregulated market being more sensitive to temperature-related residential demand. This study therefore quantifies relations between winter (November–February; December–February) temperature and residential gas consumption for the United States east of the Rocky Mountains for 1989–2000, by region and on monthly and seasonal time scales. State-level monthly gas consumption data are aggregated for nine multistate subregions of three Petroleum Administration for Defense Districts of the U.S. Department of Energy. Two temperature indices [days below percentile (DBP) and heating degree-days (HDD)] are developed using the Richman–Lamb fine-resolution (∼1° latitude–longitude) set of daily maximum and minimum temperatures for 1949–2000. Temperature parameters/values that maximize DBP/HDD correlations with gas consumption are identified. Maximum DBP and HDD correlations with gas consumption consistently are largest in the Great Lakes–Ohio Valley region on both monthly (from +0.89 to +0.91) and seasonal (from +0.93 to +0.97) time scales, for which they are based on daily maximum temperature. Such correlations are markedly lower on both time scales (from +0.62 to +0.80) in New England, where gas is less important than heating oil, and on the monthly scale (from +0.55 to +0.75) across the South because of low January correlations. For the South, maximum correlations are for daily DBP and HDD indices based on mean or minimum temperature. The percentiles having the highest DBP index correlations with gas consumption are slightly higher for northern regions than across the South. This is because lower (higher) relative (absolute) temperature thresholds are reached in warmer regions before home heating occurs. However, these optimum percentiles for all regions are bordered broadly by surrounding percentiles for which the correlations are almost as high as the maximum. This consistency establishes the robustness of the temperature–gas consumption relations obtained. The reference temperatures giving the highest HDD correlations with gas consumption are lower for the colder northern regions than farther south where the temperature range is truncated. However, all HDD reference temperatures greater than +10°C (+15°C) yield similar such correlations for northern (southern) regions, further confirming the robustness of the findings. This robustness, coupled with the very high correlation magnitudes obtained, suggests that potentially strong gas consumption predictability would follow from accurate seasonal temperature forecasts.

2002 ◽  
Vol 11 (4) ◽  
pp. 281 ◽  
Author(s):  
Michael J. Janis ◽  
Michael B. Johnson ◽  
Gloria Forthun

High spatial resolution maps of daily Keetch-Byram Drought Index (KBDI) are constructed for the south-eastern United States. KBDI is a cumulative algorithm for estimating fire potential from meteorological information, including daily maximum temperature, daily total precipitation, and mean annual precipitation. With few input parameters, the KBDI is attractive for providing estimates of fire potential at a large number of locations. The Southeast Regional Climate Center (SERCC) applies the original algorithms over daily time steps to maximize the response time in the event of rapidly increasing fire potential. Algorithms are applied to a network of 261 weather stations across the south-eastern United States to provide regional contour maps of KBDI as well as maps of week-to-week KBDI difference. Though uniformity and spatial density of weather stations and the consistency of input parameters are potential hurdles, it is shown that careful compilation of meteorological databases makes KBDI a tractable and valuable monitoring tool for automated fire-potential monitoring.


Significance Mestan also implied that Borisov and Dogan were allied in promoting Russian interests in Bulgarian politics -- while Bulgaria's 'yellow press' accuses him of being a Turkish puppet. On January 13, Borisov dismissed reports that he was keen to revive the South Stream gas pipeline project, but confirmed that Bulgaria was lobbying the European Commission for a Varna gas hub that would revive at least the underwater part of South Stream bringing Russian natural gas to Europe. Impacts DPS realignment will strengthen Borisov's hand domestically, but alienate Turkey and worry the United States. His interest in a gas hub enjoys overwhelming support in both government and opposition, with only about 20 deputies likely to oppose it. Broadly coinciding with Russian interests, the hub must now secure EU financial and political support, in the teeth of US opposition.


2008 ◽  
Vol 47 (6) ◽  
pp. 1845-1850
Author(s):  
Peter T. Soulé ◽  
Paul A. Knapp

Abstract Climatic singularities offer a degree of orderliness to notable meteorological events that are typically characterized by significant temporal variability. Significant deviations from normal daily maximum temperatures that occur following the passage of a strong midlatitude cyclone in mid- to late August in the northern Rocky Mountains of the United States are recognized in the local culture as the “August Singularity.” Daily standardized maximum temperature anomalies for August–October were examined for eight climate stations in Montana and Idaho as indicators of major midlatitude storms. The data indicate that a single-day negative maximum temperature singularity exists for 13 August. Further, a 3-day singularity event exists for 24–26 August. It is concluded that the concept of an August Singularity in the northern Rockies is valid, because the high frequency of recorded negative maximum temperature anomalies suggests that there are specific time intervals during late summer that are more likely to experience a major midlatitude storm. The principal benefit to society for the August Singularity is that the reduced temperatures help in the efforts to control wildfires that are common this time of year in the northern Rockies.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jinping Liu ◽  
Wanchang Zhang

Watershed discharge (WD) in the alpine regions, such as the upper reach of Yarlung Zangbo River Basin (YZRB), China, could have changed severely in response to climate changes. Yet, how hydrometeorological variables varied at different time scales and how WD varied in response to hydrometeorological variables in the alpine regions remained questions to be answered. The ensemble empirical mode decomposition (EEMD) method was employed in this study to investigate the nonlinear climate change trends (averaged and extreme states) and the associated multiscale impacts on WD variations over the upper reach of the YZRB during 1961–2009. All investigated hydroclimatic variables, i.e., precipitation, temperature, and WD, were found to be varied nonlinearly with clear multiscale oscillations characterizing great differences in the oscillation periods, corresponding significance levels, and variance contribution rates, among which precipitation posed a weak impact on WD variations, while temperature played a significant role in WD fluctuations. Furthermore, among all temperature extremes, the dominant index affecting WD variations was TXm (annual mean of the daily maximum temperature) but not TXx (annual maximum of the daily maximum temperature) at both interannual and interdecadal scales, which might be caused by that TXx increased evapotranspiration and reduced WD. A significant correlation between temperature (both averaged and partial extreme states) and annual WD at both interannual and interdecadal scales indicated that a synchronous change existed between them. The present study provided first insight into how hydrometeorological variables varied at different time scales and how WD fluctuated in response to hydrometeorological variables over the upper reach of the YZRB, China.


Weed Science ◽  
2004 ◽  
Vol 52 (4) ◽  
pp. 518-524 ◽  
Author(s):  
Daniel A. Ball ◽  
Sandra M. Frost ◽  
Alix I. Gitelman

Downy brome in dryland winter wheat presents a major constraint to the adoption of reduced tillage cropping systems in the Pacific Northwest of the United States. Effective suppression of downy brome during fallow periods depletes seed in the soil and reduces infestations in subsequent winter wheat crops. Delayed tillage operations or delayed herbicide applications in the spring increase the risk for production of viable downy brome seed during fallow periods. In a series of studies, downy brome panicles were sequentially sampled at Pendleton, OR, and Pullman, WA, in 1996 and 1997, and at nine locations around the winter wheat growing region of the western United States in 1999 and 2001. Cumulative growing degree days (GDD) were calculated using local, daily maximum, and minimum air temperature data. A simple GDD model based on the formula GDD = (daily maximum temperature [C] + daily minimum temperature [C])/2, with a base temperature of 0 C and a starting point of January 1, was used to calculate cumulative GDD values for panicle sampling dates. Number of seed germinating per collected panicle was recorded in greenhouse germination tests. Estimations of degree days required for production of viable downy brome seed were made using nonlinear regression of germination on GDD. The GDD value at which viable seed can be found on plants (i.e., when seed germination > 0) was of interest. Estimates of the GDD values at which viable seed could be found in the three studies ranged from 582 GDD at Bozeman, MT, to 1,287 GDD at Stillwater, OK, with a group of GDD values for Pendleton and Pullman around 1,000. Variation in seed-set GDD among locations may be attributed to differing climatic conditions that control vernalization at the various locations or to differences in vernalization requirements among downy brome biotypes (or both).


Sign in / Sign up

Export Citation Format

Share Document