scholarly journals Winter and Summer Structure of the Caribbean Low-Level Jet

2008 ◽  
Vol 21 (6) ◽  
pp. 1260-1276 ◽  
Author(s):  
Ernesto Muñoz ◽  
Antonio J. Busalacchi ◽  
Sumant Nigam ◽  
Alfredo Ruiz-Barradas

Abstract The Caribbean region shows maxima in easterly winds greater than 12 m s−1 at 925 hPa in July and February, herein referred to as the summer and winter Caribbean low-level jet (LLJ), respectively. It is important to understand the controls and influences of the Caribbean LLJ because other LLJs have been observed to be related to precipitation variability. The purpose of this study is to identify the mechanisms of the Caribbean LLJ formation and variability and their association to the regional hydroclimate. Climatological fields are calculated from the North American Regional Reanalysis and the 40-yr ECMWF Re-Analysis from 1979 to 2001. It is observed that the low-level (925 hPa) zonal wind over the Caribbean basin has a semiannual cycle and an interannual variability, with greater standard deviation during boreal summer. The semiannual cycle has peaks in February and July, which are regional amplifications of the large-scale circulation. High mountains to the south of the Caribbean Sea influence the air temperature meridional gradient, providing a baroclinic structure that favors a stronger easterly wind. The boreal summer strengthening of the Caribbean LLJ is associated with subsidence over the subtropical North Atlantic from the May-to-July shift of the ITCZ and the evolution of the Central American monsoon. Additionally, the midsummer minimum of Caribbean precipitation is related to the Caribbean LLJ through greater moisture flux divergence. From May to September the moisture carried by the Caribbean LLJ into the Gulf of Mexico is strongest. The summer interannual variability of the Caribbean LLJ is due to the variability of the meridional pressure gradient across the Caribbean basin, influenced by tropical Pacific variability during summer.

2010 ◽  
Vol 23 (6) ◽  
pp. 1477-1494 ◽  
Author(s):  
Kerry H. Cook ◽  
Edward K. Vizy

Abstract The easterly Caribbean low-level jet (CLLJ) is a prominent climate feature over the Intra-America Seas, and it is associated with much of the water vapor transport from the tropical Atlantic into the Caribbean Basin. In this study, the North American Regional Reanalysis (NARR) is analyzed to improve the understanding of the dynamics of the CLLJ and its relationship to regional rainfall variations. Horizontal momentum balances are examined to understand how jet variations on both diurnal and seasonal time scales are controlled. The jet is geostrophic to the first order. Its previously documented semidiurnal cycle (with minima at about 0400 and 1600 LT) is caused by semidiurnal cycling of the meridional geopotential height gradient in association with changes in the westward extension of the North Atlantic subtropical high (NASH). A diurnal cycle is superimposed, associated with a meridional land–sea breeze (solenoidal circulation) onto the north coast of South America, so that the weakest jet velocities occur at 1600 LT. The CLLJ is present throughout the year, and it is known to vary in strength semiannually. Peak magnitudes in July are related to the seasonal cycle of the NASH, and a second maximum in February is caused by heating over northern South America. From May through September, zonal geopotential gradients associated with summer heating over Central America and Mexico induce meridional flow. The CLLJ splits into two branches, including a southerly branch that connects with the Great Plains low-level jet (GPLLJ) bringing moisture into the central United States. During the rest of the year, the flow remains essentially zonal across the Caribbean Basin and into the Pacific. A strong (weak) CLLJ is associated with reduced (enhanced) rainfall over the Caribbean Sea throughout the year in the NARR. The relationship with precipitation over land depends on the season. Despite the fact that the southerly branch of the CLLJ feeds into the meridional GPLLJ in May through September, variations in the CLLJ strength during these months do not impact U.S. precipitation, because the CLLJ strength is varying in response to regional-scale forcing and not to changes in the large-scale circulation. During the cool season, there are statistically significant correlations between the CLLJ index and rainfall over the United States. When the CLLJ is strong, there is anomalous northward moisture transport across the Gulf of Mexico into the central United States and pronounced rainfall increases over Louisiana and Texas. A weak jet is associated with anomalous westerly flow across the southern Caribbean region and significantly reduced rainfall over the south-central United States. No connection between the intensity of the CLLJ and drought over the central United States is found. There are only three drought summers in the NARR period (1980, 1988, and 2006), and the CLLJ was extremely weak in 1988 but not in 1980 or 2006.


2007 ◽  
Vol 20 (9) ◽  
pp. 1910-1922 ◽  
Author(s):  
Alberto M. Mestas-Nuñez ◽  
David B. Enfield ◽  
Chidong Zhang

Abstract The seasonal and interannual variability of moisture transports over the Intra-Americas Sea (including the Gulf of Mexico and the Caribbean Sea) is evaluated using the NCEP–NCAR global reanalysis. The seasonal variability of these moisture transports is consistent with previous studies and shows distinctive winter and summer regimes. Boreal winter moisture is mainly delivered to the central United States from the Pacific with some contribution from the Gulf of Mexico. It is during the boreal summer that the moisture flow over the Intra-Americas Sea is most effective in supplying the water vapor to the central United States via the northern branch of the Caribbean low-level jet. The increase of intensity of this jet during July is associated with an increase in evaporation over the Intra-Americas Sea, consistent with midsummer drought conditions over this region. During both summer and winter, the interannual variability of the inflow of moisture from the Intra-Americas Sea into central United States is associated with Caribbean low-level jet variability. The source of the varying moisture is mainly the Gulf of Mexico and the North Atlantic area just east of the Bahamas Islands and the sink is precipitation over east-central United States. The main teleconnection pattern for these interannual variations appears to be the Pacific–North American, although in boreal winter ENSO and possibly the North Atlantic Oscillation may also play a role. During boreal summer, associations with ENSO mainly involve the zonal moisture exchange between the Intra-Americas Sea/tropical Atlantic and the tropical Pacific.


2015 ◽  
Vol 36 (4) ◽  
pp. 1954-1969 ◽  
Author(s):  
Tito Maldonado ◽  
Anna Rutgersson ◽  
Jorge Amador ◽  
Eric Alfaro ◽  
Björn Claremar

Author(s):  
Lisa Paravisini-Gebert

This article examines the extinction of some animals in colonial and postcolonial Caribbean region, including the Caribbean monk seal and the Creole pig, which became victims of human predatory behavior, unchecked coastal development, and the ecological changes unleashed by colonialism and postcolonial tourism development in the Caribbean basin. This article also discusses the ecological revolution measured in terms of biodiversity losses that have led to the disappearance of thousands of flora and fauna species in the region, some dating back to the earliest decades of the colonization and conquest of the Indies.


2021 ◽  
Vol 248 ◽  
pp. 105243
Author(s):  
Juliet Perdigón-Morales ◽  
Rosario Romero-Centeno ◽  
Paulina Ordoñez ◽  
Raquel Nieto ◽  
Luis Gimeno ◽  
...  

2019 ◽  
Vol 53 (7-8) ◽  
pp. 4037-4058 ◽  
Author(s):  
Edward K. Vizy ◽  
Kerry H. Cook

2019 ◽  
Vol 19 (13) ◽  
pp. 8979-8997 ◽  
Author(s):  
Cheikh Dione ◽  
Fabienne Lohou ◽  
Marie Lothon ◽  
Bianca Adler ◽  
Karmen Babić ◽  
...  

Abstract. During the boreal summer, the monsoon season that takes place in West Africa is accompanied by low stratus clouds over land that stretch from the Guinean coast several hundred kilometers inland. Numerical climate and weather models need finer description and knowledge of cloud macrophysical characteristics and of the dynamical and thermodynamical structures occupying the lowest troposphere, in order to be properly evaluated in this region. The Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) field experiment, which took place in summer 2016, addresses this knowledge gap. Low-level atmospheric dynamics and stratiform low-level cloud macrophysical properties are analyzed using in situ and remote sensing measurements continuously collected from 20 June to 30 July at Savè, Benin, roughly 180 km from the coast. The macrophysical characteristics of the stratus clouds are deduced from a ceilometer, an infrared cloud camera, and cloud radar. Onset times, evolution, dissipation times, base heights, and thickness are evaluated. The data from an ultra-high-frequency (UHF) wind profiler, a microwave radiometer, and an energy balance station are used to quantify the occurrence and characteristics of the monsoon flow, the nocturnal low-level jet, and the cold air mass inflow propagating northward from the coast of the Gulf of Guinea. The results show that these dynamical structures are very regularly observed during the entire 41 d documented period. Monsoon flow is observed every day during our study period. The so-called “maritime inflow” and the nocturnal low-level jet are also systematic features in this area. According to synoptic atmospheric conditions, the maritime inflow reaches Savè around 18:00–19:00 UTC on average. This timing is correlated with the strength of the monsoon flow. This time of arrival is close to the time range of the nocturnal low-level jet settlement. As a result, these phenomena are difficult to distinguish at the Savè site. The low-level jet occurs every night, except during rain events, and is associated 65 % of the time with low stratus clouds. Stratus clouds form between 22:00 and 06:00 UTC at an elevation close to the nocturnal low-level jet core height. The cloud base height, 310±30 m above ground level (a.g.l.), is rather stationary during the night and remains below the jet core height. The cloud top height, at 640±100 m a.g.l., is typically found above the jet core. The nocturnal low-level jet, low-level stratiform clouds, monsoon flow, and maritime inflow reveal significant day-to-day and intra-seasonal variability during the summer given the importance of the different monsoon phases and synoptic atmospheric conditions. Distributions of strength, depth, onset time, breakup time, etc. are quantified here. These results contribute to satisfy the main goals of DACCIWA and allow a conceptual model of the dynamical structures in the lowest troposphere over the southern part of West Africa.


2007 ◽  
Vol 25 (10) ◽  
pp. 2125-2137 ◽  
Author(s):  
M. C. R. Kalapureddy ◽  
D. N. Rao ◽  
A. R. Jain ◽  
Y. Ohno

Abstract. Three-year high-resolution wind observations of the wind profiler have been utilized to characterize the diurnal and seasonal features of the monsoon Low-Level Jet (LLJ) over a tropical station, Gadanki (13.5° N, 79.2° E), with a focus on the diurnal variability of low-level winds. The Boreal summer monsoon winds show a conspicuously strong westerly LLJ with average wind speed exceeding 20 m s−1. The L-band wind profiler measurements have shown an advantage of better height and time resolutions over the conventional radiosonde method for diurnal wind measurements. An interesting diurnal oscillation of LLJ core has been observed. It is varying in the height range of 1.8±0.6 km with the maximum and minimum intensity noticed during the early morning and afternoon hours, respectively. The jet core (wind maxima) height is observed to coincide with the inversion height. Strong wind shears are normally located beneath the LLJ core. The sole wind profiler observations are capable of identifying the monsoon phases, such as onset, break and active spells, etc. The mutual influence between the LLJ and the boundary layer has been discussed. One notices that the observed LLJ diurnal structures depend on the local convective activity, wind shears and turbulence activity associated with boundary layer winds. The day-to-day change in the LLJ structure depends on the latitudinal position of the LLJ core.


2009 ◽  
Vol 22 (8) ◽  
pp. 2216-2239 ◽  
Author(s):  
Man-Li C. Wu ◽  
Siegfried D. Schubert ◽  
Max J. Suarez ◽  
Norden E. Huang

Abstract This study examines the nature of episodes of enhanced warm-season moisture flux into the Gulf of California. Both spatial structure and primary time scales of the fluxes are examined using the 40-yr ECMWF Re-Analysis data for the period 1980–2001. The analysis approach consists of a compositing technique that is keyed on the low-level moisture fluxes into the Gulf of California. The results show that the fluxes have a rich spectrum of temporal variability, with periods of enhanced transport over the gulf linked to African easterly waves on subweekly (3–8 day) time scales, the Madden–Julian oscillation (MJO) at intraseasonal time scales (20–90 day), and intermediate (10–15 day) time-scale disturbances that appear to originate primarily in the Caribbean Sea–western Atlantic Ocean. In the case of the MJO, enhanced low-level westerlies and large-scale rising motion provide an environment that favors large-scale cyclonic development near the west coast of Central America that, over the course of about 2 weeks, expands northward along the coast eventually reaching the mouth of the Gulf of California where it acts to enhance the southerly moisture flux in that region. On a larger scale, the development includes a northward shift in the eastern Pacific ITCZ, enhanced precipitation over much of Mexico and the southwestern United States, and enhanced southerly/southeasterly fluxes from the Gulf of Mexico into Mexico and the southwestern and central United States. In the case of the easterly waves, the systems that reach Mexico appear to redevelop/reorganize on the Pacific coast and then move rapidly to the northwest to contribute to the moisture flux into the Gulf of California. The most intense fluxes into the gulf on these time scales appear to be synchronized with a midlatitude short-wave trough over the U.S. West Coast and enhanced low-level southerly fluxes over the U.S. Great Plains. The intermediate (10–15 day) time-scale systems have zonal wavelengths roughly twice that of the easterly waves, and their initiation appears to be linked to an extratropical U.S. East Coast ridge and associated northeasterly winds that extend well into the Caribbean Sea during their development phase. The short (3–8 day) and, to a lesser extent, the intermediate (10–15 day) time-scale fluxes tend to be enhanced when the convectively active phase of the MJO is situated over the Americas.


Sign in / Sign up

Export Citation Format

Share Document