The Global Monsoon Variability Simulated by CMIP3 Coupled Climate Models*

2008 ◽  
Vol 21 (20) ◽  
pp. 5271-5294 ◽  
Author(s):  
Hyung-Jin Kim ◽  
Bin Wang ◽  
Qinghua Ding

Abstract The global monsoon climate variability during the second half of the twentieth century simulated by 21 coupled global climate models (CGCMs) that participated in the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3 (CMIP3) is evaluated. Emphasis was placed on climatology, multidecadal trend, and the response of the global monsoon precipitation to volcanic aerosols. The impact of the atmospheric model’s horizontal resolution on the group ensemble mean (GEM; obtained from the three resolution groups) simulations of global monsoon climate is also examined. The CMIP3 CGCMs’ multimodel ensemble simulates a reasonably realistic climatology of the global monsoon precipitation and circulation. The GEMs are also able to capture the gross features of the global monsoon precipitation and westerly domains. However, the spreading among the rainfall GEMs is large, particularly at the windward side of narrow mountains (e.g., the western coast of India, the Philippines, Mexico, and the steep slope of the Tibetan Plateau). Main common biases in modeling rainfall climatology include a northeastward shift of the intertropical convergence zone (ITCZ) in the tropical North Pacific and a southward migration of the North Atlantic ITCZ during boreal winter. The trend in the Northern Hemisphere land monsoon index (NHMI) detected in the CMIP3 models is generally consistent with the observations, albeit with much weaker magnitude. The significant decreasing NHMI trend during 1951–85 and 1951–99 occurs mainly in the models with volcanic aerosols (VOL models). This volcanic signal is detectable by comparison of the forced and free runs. It is estimated that from about one-quarter to one-third of the drying trend in the Northern Hemisphere land monsoon precipitation over the latter half of the twentieth century was likely due to the effects of the external volcanic forcings. On the other hand, the significant increasing trend in the global ocean monsoon index (GOMI) during 1980–99 appears chiefly in those models that are free of volcanic aerosols (No-VOL models). The exclusion of the volcanic aerosols is significant in simulating the positive GOMI trend against the internal variability of each model. These results suggest the climatic importance of the volcanic forcings in the global monsoon precipitation variability.

2008 ◽  
Vol 21 (15) ◽  
pp. 3833-3852 ◽  
Author(s):  
Tianjun Zhou ◽  
Rucong Yu ◽  
Hongmei Li ◽  
Bin Wang

Abstract Previous examination of changes in global monsoon precipitation over land reveals an overall weakening over the recent half-century (1950–2000). The present study suggests that this significant change in global land monsoon precipitation is deducible from the atmosphere’s response to the observed SST variations. When forced by historical sea surface temperatures covering the same period, the ensemble simulation with the NCAR Community Atmosphere Model, version 2 (CAM2) model successfully reproduced the weakening tendency of global land monsoon precipitation. This decreasing tendency was mainly caused by the warming trend over the central-eastern Pacific and the western tropical Indian Ocean. At the interannual time scale, the global land monsoon precipitation is closely correlated with ENSO. The simulated interannual variation of the global land monsoon index matches well with the observation, indicating that most monsoon precipitation variations arise from the ocean forcing. There are uncertainties between the GPCP and the CMAP data in describing the evolution of global ocean monsoon precipitation. There is very little correspondence between the simulated and the observed global monsoon index over the ocean area. Uncertainties in the satellite data and model deficiencies in describing the ocean monsoon domain are partly to blame. Among the components of global monsoon systems, the Asian–Australian monsoon system has the lowest reproducibility with prescribed SST forcing due to the neglect of air–sea feedback.


2018 ◽  
Vol 31 (17) ◽  
pp. 6947-6966 ◽  
Author(s):  
Kaiqiang Deng ◽  
Song Yang ◽  
Mingfang Ting ◽  
Yaheng Tan ◽  
Shan He

Global monsoon precipitation (GMP) brings the majority of water for the local agriculture and ecosystem. The Northern Hemisphere (NH) GMP shows an upward trend over the past decades, while the trend in the Southern Hemisphere (SH) GMP is weak and insignificant. The first three singular value decomposition modes between NH GMP and global SST during boreal summer reflect, in order, the Atlantic multidecadal oscillation (AMO), eastern Pacific (EP) El Niño, and central Pacific (CP) El Niño, when the AMO dominates the NH climate and contributes to the increased trend. However, the first three modes between SH GMP and global SST during boreal winter are revealed as EP El Niño, the AMO, and CP El Niño, when the EP El Niño becomes the most significant driver of the SH GMP, and the AMO-induced rainfall anomalies may cancel out each other within the SH global monsoon domain and thus result in a weak trend. The intensification of NH GMP is proposed to favor the occurrences of droughts and heat waves (HWs) in the midlatitudes through a monsoon–desert-like mechanism. That is, the diabatic heating associated with the monsoonal rainfall may drive large-scale circulation anomalies and trigger intensified subsidence in remote regions. The anomalous descending motions over the midlatitudes are usually accompanied by clear skies, which result in less precipitation and more downward solar radiation, and thus drier and hotter soil conditions that favor the occurrences of droughts and HWs. In comparison, the SH GMP may exert much smaller impacts on the NH extremes in spring and summer, probably because the winter signals associated with SH GMP cannot sufficiently persist into the following seasons.


2019 ◽  
Vol 53 (11) ◽  
pp. 7131-7149 ◽  
Author(s):  
Xin Huang ◽  
Tianjun Zhou ◽  
Wenxia Zhang ◽  
Jie Jiang ◽  
Puxi Li ◽  
...  

2011 ◽  
Vol 24 (21) ◽  
pp. 5604-5618 ◽  
Author(s):  
Hyung-Jin Kim ◽  
Kumiko Takata ◽  
Bin Wang ◽  
Masahiro Watanabe ◽  
Masahide Kimoto ◽  
...  

Abstract This study evaluates the capability of coupled global climate models (CGCMs) in simulating the prime examples of the forced response (global monsoon) and internal feedback process (El Niño). Emphases are also placed on the fidelity of the year-to-year variability of global monsoon precipitation that is coordinated by the interannual sea surface temperature (SST) fluctuation over the tropics. The latest version of the Model for Interdisciplinary Research on Climate 5 (MIROC5) with advanced physical schemes is compared with the two previous versions (MIROC3.2, high- and medium-resolution versions) and with the 20 CGCMs participating in the third phase of the Coupled Model Intercomparison Project (CMIP3). The climatological annual mean and cycles of precipitation and 850-hPa winds, the key components to demarcate the global monsoon domain, are reproduced better in MIROC5 than in MIROC3 versions. As a consequence, the former considerably outperforms the latter and is generally superior to the CMIP3 CGCMs in replicating the intensity and domain of global monsoon precipitation and circulations. These results highlight the importance of the improved physical parameterization in a model. Analyses of the monthly Niño-3 index suggest that the amplitude and periodicity of El Niño are simulated better in MIROC5 than in the MIROC3 versions. Yet the reality of nonlinear ENSO dynamics measured indirectly by the SST asymmetricity over the equatorial Pacific is unsatisfactory in the MIROC family as well as in the majority of the CMIP3 models. The maximum covariance analysis shows that a significant fraction of the interannual global monsoon rainfall variability is in concert with El Niño. The multimodel results reveal that such coupling is robust across the current CGCMs. More importantly, the fidelity of the global monsoon precipitation significantly relies on the realism of tropical SST. Comparison among the MIROC models suggests that improved El Niño is likely attributable to the more realistic Bjerknes feedback loop, which results from the intensified convective activity over the equatorial central Pacific Ocean.


2022 ◽  
pp. 1-66

Abstract Northern Hemisphere Land monsoon precipitation (NHLM) exhibits multidecadal variability, decreasing over the second half of the 20st century and increasing after the 1980s. We use a novel combination of CMIP6 simulations and several large ensembles to assess the relative roles of drivers of monsoon precipitation trends, analyzing the effects of anthropogenic aerosol (AA), greenhouse gas (GHG) emissions and natural forcing. We decomposed summer global monsoon precipitation anomalies into dynamic and thermodynamic terms to assess the drivers of precipitation trends. We show that the drying trends are likely to be mainly due to increased AA emissions, which cause shifts of the atmospheric circulation and a decrease in moisture advection. Increases in GHG emissions cause monsoon precipitation to increase due to strengthened moisture advection. The uncertainty in summer monsoon precipitation trends is explored using three initial condition large ensembles. AA emissions have strong controls on monsoon precipitation trends, exceeding the effects of internal climate variability. However, uncertainties in the effects of external forcings on monsoon precipitation are high for specific periods and monsoon domains, and due to differences in how models simulate shifts in atmospheric circulation. The effect of AA emissions is uncertain over the northern African monsoon domain, due to differences among climate models in simulating the effects of AA emissions on net shortwave radiation over the North Atlantic Ocean.


2013 ◽  
Vol 26 (20) ◽  
pp. 7813-7828 ◽  
Author(s):  
John P. Krasting ◽  
Anthony J. Broccoli ◽  
Keith W. Dixon ◽  
John R. Lanzante

Abstract Using simulations performed with 18 coupled atmosphere–ocean global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), projections of the Northern Hemisphere snowfall under the representative concentration pathway (RCP4.5) scenario are analyzed for the period 2006–2100. These models perform well in simulating twentieth-century snowfall, although there is a positive bias in many regions. Annual snowfall is projected to decrease across much of the Northern Hemisphere during the twenty-first century, with increases projected at higher latitudes. On a seasonal basis, the transition zone between negative and positive snowfall trends corresponds approximately to the −10°C isotherm of the late twentieth-century mean surface air temperature, such that positive trends prevail in winter over large regions of Eurasia and North America. Redistributions of snowfall throughout the entire snow season are projected to occur—even in locations where there is little change in annual snowfall. Changes in the fraction of precipitation falling as snow contribute to decreases in snowfall across most Northern Hemisphere regions, while changes in total precipitation typically contribute to increases in snowfall. A signal-to-noise analysis reveals that the projected changes in snowfall, based on the RCP4.5 scenario, are likely to become apparent during the twenty-first century for most locations in the Northern Hemisphere. The snowfall signal emerges more slowly than the temperature signal, suggesting that changes in snowfall are not likely to be early indicators of regional climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Hayatte Akhoudas ◽  
Jean-Baptiste Sallée ◽  
F. Alexander Haumann ◽  
Michael P. Meredith ◽  
Alberto Naveira Garabato ◽  
...  

AbstractThe Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses—ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4–9.7 Sv) yielding larger rates than tracer-based estimates (3.7–4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m$$^{-3}$$ - 3 $$\gamma _{n}$$ γ n is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.


2018 ◽  
Vol 39 (3) ◽  
pp. 1490-1503 ◽  
Author(s):  
Zixuan Han ◽  
Tao Su ◽  
Bicheng Huang ◽  
Taichen Feng ◽  
Shulin Qu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter Hoffmann ◽  
Jascha Lehmann ◽  
Bijan H. Fallah ◽  
Fred F. Hattermann

AbstractRecent studies have shown that hydro-climatic extremes have increased significantly in number and intensity in the last decades. In the Northern Hemisphere such events were often associated with long lasting persistent weather patterns. In 2018, hot and dry conditions prevailed for several months over Central Europe leading to record-breaking temperatures and severe harvest losses. The underlying circulation processes are still not fully understood and there is a need for improved methodologies to detect and quantify persistent weather conditions. Here, we propose a new method to detect, compare and quantify persistence through atmosphere similarity patterns by applying established image recognition methods to day to day atmospheric fields. We find that persistent weather patterns have increased in number and intensity over the last decades in Northern Hemisphere mid-latitude summer, link this to hydro-climatic risks and evaluate the extreme summers of 2010 (Russian heat wave) and of 2018 (European drought). We further evaluate the ability of climate models to reproduce long-term trend patterns of weather persistence and the result is a notable discrepancy to observed developments.


Sign in / Sign up

Export Citation Format

Share Document