scholarly journals Use of Bayesian Merging Techniques in a Multimodel Seasonal Hydrologic Ensemble Prediction System for the Eastern United States

2008 ◽  
Vol 9 (5) ◽  
pp. 866-884 ◽  
Author(s):  
Lifeng Luo ◽  
Eric F. Wood

Abstract Skillful seasonal hydrologic predictions are useful in managing water resources, preparing for droughts and their impacts, energy planning, and many other related sectors. In this study, a seasonal hydrologic ensemble prediction system is developed and evaluated over the eastern United States, with a focus on the Ohio River basin. The system uses a hydrologic model (i.e., the Variable Infiltration Capacity model) as the central element for producing ensemble predictions of soil moisture, snow, and streamflow with lead times up to six months. One unique feature of this system is in the method for generating ensemble atmospheric forcings for the forecast period. It merges seasonal climate forecasts from multiple climate models with observed climatology in a Bayesian framework, such that the uncertainties related to the atmospheric forcings can be better quantified while the signals from individual models are combined. Simultaneously, climate model forecasts are downscaled to an appropriate spatial scale for hydrologic predictions. When generating daily meteorological forcing, the system uses the rank structures of selected historical forcing records to ensure reasonable weather patterns in space and time. Seasonal hydrologic predictions are made with this system, using seasonal climate forecast from the NCEP Climate Forecast System (CFS), and from a combination of the NCEP CFS and seven climate models in the European Union’s Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (CFS+DEMETER). Forecasts of these two types are made for the summer periods (May to October) of 1981–99 and are compared to forecasts produced with the traditional Ensemble Streamflow Prediction (ESP) approach used in operational seasonal streamflow predictions. The forecasts from this system for the summer of 1988 show very promising skill in precipitation, soil moisture, and streamflow over the Ohio River basin, especially the multimodel CFS+DEMETER forecast. The evaluation with all 19 summer forecasts shows that the multimodel CFS+DEMETER forecast is significantly better than the ESP forecast during the first two months of the forecasts. The advantage is marginal to moderate when only the CFS forecast is used. This study validates the approach of using seasonal climate predictions from dynamic climate models in hydrological predictions, and it also emphasizes the need for international collaborations to develop multimodel seasonal predictions.

2011 ◽  
Vol 26 (4) ◽  
pp. 425-446 ◽  
Author(s):  
Nathalie Voisin ◽  
Florian Pappenberger ◽  
Dennis P. Lettenmaier ◽  
Roberto Buizza ◽  
John C. Schaake

Abstract A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003–07. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis temperatures and winds, and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF Ensemble Prediction System (EPS) 10-day ensemble forecast. A parallel setup was used where ECMWF EPS forecasts were interpolated to the spatial scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effects of the initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The hydrologic prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. The initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.


2010 ◽  
Vol 25 (6) ◽  
pp. 1603-1627 ◽  
Author(s):  
Nathalie Voisin ◽  
John C. Schaake ◽  
Dennis P. Lettenmaier

Abstract Two approaches for downscaling and calibrating error estimates from ensemble precipitation forecasts are evaluated; the two methods are intended to be used to produce flood forecasts based on global weather forecasts in ungauged river basins. The focus of this study is on the ability of the approaches to reproduce observed forecast errors when applied to daily precipitation forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) for a 10-day forecast period. The two approaches are bias correction with spatial disaggregation (BCSD) and an analog technique. Mean forecast errors and skills are evaluated with respect to Tropical Rainfall Monitoring Mission (TRMM) observations over the Ohio River basin for the period 2002–06 for daily and 5-day accumulations and for 0.25° and 1° spatial resolutions. The Ohio River basin was chosen so that a relatively dense gauge-based observed precipitation dataset could also be used in the evaluation of the two approaches. Neither the BCSD nor the analog approach is able to improve on the forecast prediction skill resulting from a simple spatial interpolation benchmark. However, both approaches improve the forecast reliability, although more so for the analog approach. The BCSD method improves the bias for all forecast amounts (but less so for large amounts), but the downscaled precipitation patterns are unrealistic. The analog approach reduces biases over a wider range of forecast amounts, and the precipitation patterns are more realistic.


2012 ◽  
Vol 4 (1) ◽  
pp. 65
Author(s):  
Xiao Yu-Hua ◽  
He Guang-Bi ◽  
Chen Jing ◽  
Deng Guo

2012 ◽  
Vol 27 (3) ◽  
pp. 757-769 ◽  
Author(s):  
James I. Belanger ◽  
Peter J. Webster ◽  
Judith A. Curry ◽  
Mark T. Jelinek

Abstract This analysis examines the predictability of several key forecasting parameters using the ECMWF Variable Ensemble Prediction System (VarEPS) for tropical cyclones (TCs) in the North Indian Ocean (NIO) including tropical cyclone genesis, pregenesis and postgenesis track and intensity projections, and regional outlooks of tropical cyclone activity for the Arabian Sea and the Bay of Bengal. Based on the evaluation period from 2007 to 2010, the VarEPS TC genesis forecasts demonstrate low false-alarm rates and moderate to high probabilities of detection for lead times of 1–7 days. In addition, VarEPS pregenesis track forecasts on average perform better than VarEPS postgenesis forecasts through 120 h and feature a total track error growth of 41 n mi day−1. VarEPS provides superior postgenesis track forecasts for lead times greater than 12 h compared to other models, including the Met Office global model (UKMET), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Global Forecasting System (GFS), and slightly lower track errors than the Joint Typhoon Warning Center. This paper concludes with a discussion of how VarEPS can provide much of this extended predictability within a probabilistic framework for the region.


2009 ◽  
Vol 24 (3) ◽  
pp. 812-828 ◽  
Author(s):  
Young-Mi Min ◽  
Vladimir N. Kryjov ◽  
Chung-Kyu Park

Abstract A probabilistic multimodel ensemble prediction system (PMME) has been developed to provide operational seasonal forecasts at the Asia–Pacific Economic Cooperation (APEC) Climate Center (APCC). This system is based on an uncalibrated multimodel ensemble, with model weights inversely proportional to the errors in forecast probability associated with the model sampling errors, and a parametric Gaussian fitting method for the estimate of tercile-based categorical probabilities. It is shown that the suggested method is the most appropriate for use in an operational global prediction system that combines a large number of models, with individual model ensembles essentially differing in size and model weights in the forecast and hindcast datasets being inconsistent. Justification for the use of a Gaussian approximation of the precipitation probability distribution function for global forecasts is also provided. PMME retrospective and real-time forecasts are assessed. For above normal and below normal categories, temperature forecasts outperform climatology for a large part of the globe. Precipitation forecasts are definitely more skillful than random guessing for the extratropics and climatological forecasts for the tropics. The skill of real-time forecasts lies within the range of the interannual variability of the historical forecasts.


2019 ◽  
Vol 32 (3) ◽  
pp. 957-972 ◽  
Author(s):  
Takeshi Doi ◽  
Swadhin K. Behera ◽  
Toshio Yamagata

This paper explores merits of 100-ensemble simulations from a single dynamical seasonal prediction system by evaluating differences in skill scores between ensembles predictions with few (~10) and many (~100) ensemble members. A 100-ensemble retrospective seasonal forecast experiment for 1983–2015 is beyond current operational capability. Prediction of extremely strong ENSO and the Indian Ocean dipole (IOD) events is significantly improved in the larger ensemble. It indicates that the ensemble size of 10 members, used in some operational systems, is not adequate for the occurrence of 15% tails of extreme climate events, because only about 1 or 2 members (approximately 15% of 12) will agree with the observations. We also showed an ensemble size of about 50 members may be adequate for the extreme El Niño and positive IOD predictions at least in the present prediction system. Even if running a large-ensemble prediction system is quite costly, improved prediction of disastrous extreme events is useful for minimizing risks of possible human and economic losses.


2013 ◽  
Vol 17 (6) ◽  
pp. 2107-2120 ◽  
Author(s):  
S. Davolio ◽  
M. M. Miglietta ◽  
T. Diomede ◽  
C. Marsigli ◽  
A. Montani

Abstract. Numerical weather prediction models can be coupled with hydrological models to generate streamflow forecasts. Several ensemble approaches have been recently developed in order to take into account the different sources of errors and provide probabilistic forecasts feeding a flood forecasting system. Within this framework, the present study aims at comparing two high-resolution limited-area meteorological ensembles, covering short and medium range, obtained via different methodologies, but implemented with similar number of members, horizontal resolution (about 7 km), and driving global ensemble prediction system. The former is a multi-model ensemble, based on three mesoscale models (BOLAM, COSMO, and WRF), while the latter, following a single-model approach, is the operational ensemble forecasting system developed within the COSMO consortium, COSMO-LEPS (limited-area ensemble prediction system). The meteorological models are coupled with a distributed rainfall-runoff model (TOPKAPI) to simulate the discharge of the Reno River (northern Italy), for a recent severe weather episode affecting northern Apennines. The evaluation of the ensemble systems is performed both from a meteorological perspective over northern Italy and in terms of discharge prediction over the Reno River basin during two periods of heavy precipitation between 29 November and 2 December 2008. For each period, ensemble performance has been compared at two different forecast ranges. It is found that, for the intercomparison undertaken in this specific study, both mesoscale model ensembles outperform the global ensemble for application at basin scale. Horizontal resolution is found to play a relevant role in modulating the precipitation distribution. Moreover, the multi-model ensemble provides a better indication concerning the occurrence, intensity and timing of the two observed discharge peaks, with respect to COSMO-LEPS. This seems to be ascribable to the different behaviour of the involved meteorological models. Finally, a different behaviour comes out at different forecast ranges. For short ranges, the impact of boundary conditions is weaker and the spread can be mainly attributed to the different characteristics of the models. At longer forecast ranges, the similar behaviour of the multi-model members forced by the same large-scale conditions indicates that the systems are governed mainly by the boundary conditions, although the different limited area models' characteristics may still have a non-negligible impact.


Sign in / Sign up

Export Citation Format

Share Document