scholarly journals An Analysis of Low-Level Jets in the Greater Ross Ice Shelf Region Based on Numerical Simulations

2008 ◽  
Vol 136 (11) ◽  
pp. 4188-4205 ◽  
Author(s):  
Mark W. Seefeldt ◽  
John J. Cassano

Abstract An analysis of the presence and location of low-level jets (LLJs) across the Ross Ice Shelf region in Antarctica is presented based on the analysis of archived output from the real-time Antarctic Mesoscale Prediction System (AMPS). The method of self-organizing maps (SOMs) is used to objectively identify different patterns in column-averaged wind speed (over the approximately lowest 1200 m of the atmosphere) as an identifier to the location of LLJs. The results indicate three primary LLJs in the region. The largest and most dominant LLJ is along the Transantarctic Mountains by the Siple Coast and the southern end of the Ross Ice Shelf. The second LLJ extends from the base of Byrd Glacier and curves to the north passing by the eastern extremes of Ross Island. The third LLJ extends from the base of Reeves Glacier and curves to the north across the western Ross Sea. A strong seasonality is observed in the frequency and intensity of the LLJs with the highest values for wind speed and the size of the LLJ at a maximum during the winter and spring months.

2003 ◽  
Vol 15 (1) ◽  
pp. 13-23 ◽  
Author(s):  
DAVID M. HOLLAND ◽  
STANLEY S. JACOBS ◽  
ADRIAN JENKINS

We applied a modified version of the Miami isopycnic coordinate ocean general circulation model (MICOM) to the ocean cavity beneath the Ross Ice Shelf to investigate the circulation of ocean waters in the sub-ice shelf cavity, along with the melting and freezing regimes at the base of the ice shelf. Model passive tracers are utilized to highlight the pathways of waters entering and exiting the cavity, and output is compared with data taken in the cavity and along the ice shelf front. High Salinity Shelf Water on the western Ross Sea continental shelf flows into the cavity along the sea floor and is transformed into Ice Shelf Water upon contact with the ice shelf base. Ice Shelf Water flows out of the cavity mainly around 180°, but also further east and on the western side of McMurdo Sound, as observed. Active ventilation of the region near the ice shelf front is forced by seasonal variations in the density structure of the water column to the north, driving rapid melting. Circulation in the more isolated interior is weaker, leading to melting at deeper ice and refreezing beneath shallower ice. Net melting over the whole ice shelf base is lower than other estimates, but is likely to increase as additional forcings are added to the model.


2007 ◽  
Vol 19 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Gerald L. Kooyman ◽  
David G. Ainley ◽  
Grant Ballard ◽  
Paul J. Ponganis

The arrival in January 2001 in the south-west Ross Sea of two giant icebergs, C16 and B15A, subsequently had dramatic affects on two emperor penguin colonies. B15A collided with the north-west tongue of the Ross Ice Shelf at Cape Crozier, Ross Island, in the following months and destroyed the penguins' nesting habitat. The colony totally failed in 2001, and years after, with the icebergs still in place, exhibited reduced production that ranged from 0 to 40% of the 1201 chicks produced in 2000. At Beaufort Island, 70 km NW of Crozier, chick production declined to 6% of the 2000 count by 2004. Collisions with the Ross Ice Shelf at Cape Crozier caused incubating adults to be crushed, trapped in ravines, or to abandon the colony and, since 2001, to occupy poorer habitat. The icebergs separated Beaufort Island from the Ross Sea Polynya, formerly an easy route to feeding and wintering areas. This episode has provided a glimpse of events which have probably occurred infrequently since the West Antarctic Ice Sheet began to retreat 12 000 years ago. The results allow assessment of recovery rates for one colony decimated by both adult and chick mortality, and the other colony by adult abandonment and chick mortality.


1994 ◽  
Vol 6 (3) ◽  
pp. 359-364 ◽  
Author(s):  
D. Damaske ◽  
J. Behrendt ◽  
A. McCafferty ◽  
R. Saltus ◽  
U. Meyer

Aeromagnetic data collected on the GANOVEX IV and GANOVEX VI expeditions are combined in this report to give a synoptic view of the western Ross Sea, Antarctica. The addition of the new GANOVEX VI data allows the identification of the southern boundary of the “Ross Sea Unit” — a magnetic unit containing rift-fabric anomalies of the West Antarctic rift system in the Victoria Land basin. Although this boundary has a similar WSW–ENE orientation to the northern boundary, as identified in the GANOVEX IV survey, the newly identified southern magnetic unit (called the “Ross Island and Ice Shelf Edge Unit”) includes evidence of the S–N rift-fabric that is not found in the north, i.e. the rift-fabric continues farther south. The linear boundaries themselves are interpreted as transfer faults as proposed by previous workers for the tectonic development of the Ross Sea area.


1994 ◽  
Vol 6 (3) ◽  
pp. 339-346 ◽  
Author(s):  
Warwick F. Vincent ◽  
Clive Howard-Williams

Nutrient and major ion concentrations were measured in surface water samples from lakes, ponds and streams at sites 30–320 km south of McMurdo Sound: the Darwin Glacier region (79.7–80.0°S), Pyramid Trough in the southern Dry Valleys (78.2°S), and the McMurdo Ice Shelf ablation zone (77.8–78.4°S). These aquatic environments ranged from dilute meltwaters (conductivity <0.05 mS cm−1) to concentrated brines (>50 mS cm−1). The lowest nitrate concentrations were recorded at the sites closest to the seasonally open waters of the Ross Sea. Much higher values (100–142000mg NO3–Nm−3) were recorded at sites further south. These observations support the hypothesis that NO3 precipitation over Antarctica is of stratospheric rather than coastal marine origin. The nitrogen-rich waters contained chloride and nitrate in the ratio 5.45g Cl:1g N (C.V.=8.4%) which is within the range for Antarctic snow, and indicative of nitrate enrichment by freeze concentration processes. Cyanobacterial mats were conspicuous elements of the biota across the full range of salinities, and were usually dominated by oscilatoriacean species. Nitrogen-fixing cyanobacteria and diatoms were also represented in these benthic microbial communities at the more northern sites, but were absent from all samples from the Darwin Glacier region.


2014 ◽  
Vol 142 (7) ◽  
pp. 2361-2378 ◽  
Author(s):  
Melissa A. Nigro ◽  
John J. Cassano

Abstract The interaction of synoptic and mesoscale circulations with the steep topography surrounding the Ross Ice Shelf, Antarctica, greatly influences the wind patterns in the region of the Ross Ice Shelf. The topography provides forcing for features such as katabatic winds, barrier winds, and barrier wind corner jets. The combination of topographic forcing and synoptic and mesoscale forcing from cyclones that traverse the Ross Ice Shelf sector create a region of strong but varying winds. This paper identifies the dominant surface wind patterns over the Ross Ice Shelf using output from the Weather Research and Forecasting Model run within the Antarctic Mesoscale Prediction System and the method of self-organizing maps (SOM). The dataset has 15-km grid spacing and is the first study to identify the dominant surface wind patterns using data at this resolution. The analysis shows that the Ross Ice Shelf airstream, a dominant stream of air flowing northward from the interior of the continent over the western and/or central Ross Ice Shelf to the Ross Sea, is present over the Ross Ice Shelf approximately 34% of the time, the Ross Ice Shelf airstream varies in both its strength and position over the Ross Ice Shelf, and barrier wind corner jets are present in the region to the northwest of the Prince Olav Mountains approximately 14% of the time and approximately 41% of the time when the Ross Ice Shelf airstream is present.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 155
Author(s):  
Fiorenza Torricella ◽  
Romana Melis ◽  
Elisa Malinverno ◽  
Giorgio Fontolan ◽  
Mauro Bussi ◽  
...  

The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann.


2020 ◽  
pp. 1-14
Author(s):  
Richard D. Ray ◽  
Kristine M. Larson ◽  
Bruce J. Haines

Abstract New determinations of ocean tides are extracted from high-rate Global Positioning System (GPS) solutions at nine stations sitting on the Ross Ice Shelf. Five are multi-year time series. Three older time series are only 2–3 weeks long. These are not ideal, but they are still useful because they provide the only in situ tide observations in that sector of the ice shelf. The long tide-gauge observations from Scott Base and Cape Roberts are also reanalysed. They allow determination of some previously neglected tidal phenomena in this region, such as third-degree tides, and they provide context for analysis of the shorter datasets. The semidiurnal tides are small at all sites, yet M2 undergoes a clear seasonal cycle, which was first noted by Sir George Darwin while studying measurements from the Discovery expedition. Darwin saw a much larger modulation than we observe, and we consider possible explanations - instrumental or climatic - for this difference.


2009 ◽  
Vol 48 (8) ◽  
pp. 1627-1642 ◽  
Author(s):  
P. Baas ◽  
F. C. Bosveld ◽  
H. Klein Baltink ◽  
A. A. M. Holtslag

Abstract A climatology of nocturnal low-level jets (LLJs) is presented for the topographically flat measurement site at Cabauw, the Netherlands. LLJ characteristics are derived from a 7-yr half-hourly database of wind speed profiles, obtained from the 200-m mast and a wind profiler. Many LLJs at Cabauw originate from an inertial oscillation, which develops after sunset in a layer decoupled from the surface by stable stratification. The data are classified to different types of stable boundary layers by using the geostrophic wind speed and the isothermal net radiative cooling as classification parameters. For each of these classes, LLJ characteristics like frequency of occurrence, height above ground level, and the turning of the wind vector across the boundary layer are determined. It is found that LLJs occur in about 20% of the nights, are typically situated at 140–260 m above ground level, and have a speed of 6–10 m s−1. Development of a substantial LLJ is most likely to occur for moderate geostrophic forcing and a high radiative cooling. A comparison with the 40-yr ECMWF Re-Analysis (ERA-40) is added to illustrate how the results can be used to evaluate the performance of atmospheric models.


2017 ◽  
Vol 56 (8) ◽  
pp. 2239-2258 ◽  
Author(s):  
Jonathan D. Wille ◽  
David H. Bromwich ◽  
John J. Cassano ◽  
Melissa A. Nigro ◽  
Marian E. Mateling ◽  
...  

AbstractAccurately predicting moisture and stability in the Antarctic planetary boundary layer (PBL) is essential for low-cloud forecasts, especially when Antarctic forecasters often use relative humidity as a proxy for cloud cover. These forecasters typically rely on the Antarctic Mesoscale Prediction System (AMPS) Polar Weather Research and Forecasting (Polar WRF) Model for high-resolution forecasts. To complement the PBL observations from the 30-m Alexander Tall Tower! (ATT) on the Ross Ice Shelf as discussed in a recent paper by Wille and coworkers, a field campaign was conducted at the ATT site from 13 to 26 January 2014 using Small Unmanned Meteorological Observer (SUMO) aerial systems to collect PBL data. The 3-km-resolution AMPS forecast output is combined with the global European Centre for Medium-Range Weather Forecasts interim reanalysis (ERAI), SUMO flights, and ATT data to describe atmospheric conditions on the Ross Ice Shelf. The SUMO comparison showed that AMPS had an average 2–3 m s−1 high wind speed bias from the near surface to 600 m, which led to excessive mechanical mixing and reduced stability in the PBL. As discussed in previous Polar WRF studies, the Mellor–Yamada–Janjić PBL scheme is likely responsible for the high wind speed bias. The SUMO comparison also showed a near-surface 10–15-percentage-point dry relative humidity bias in AMPS that increased to a 25–30-percentage-point deficit from 200 to 400 m above the surface. A large dry bias at these critical heights for aircraft operations implies poor AMPS low-cloud forecasts. The ERAI showed that the katabatic flow from the Transantarctic Mountains is unrealistically dry in AMPS.


Sign in / Sign up

Export Citation Format

Share Document