scholarly journals Pacific Water Transport in the Western Arctic Ocean Simulated by an Eddy-Resolving Coupled Sea Ice–Ocean Model

2009 ◽  
Vol 39 (9) ◽  
pp. 2194-2211 ◽  
Author(s):  
Eiji Watanabe ◽  
Hiroyasu Hasumi

Abstract The process of the Pacific water transport in the Chukchi Sea and the southern Canada Basin is investigated by using an eddy-resolving coupled sea ice–ocean model. The simulation result demonstrates that the Pacific water flows into the basin by mesoscale baroclinic eddies, which are generated and developed as a result of the instability of a narrow and intense jet through the Barrow Canyon. Each eddy has a baroclinic anticyclonic structure, and its horizontal and vertical scales grow up by being merged with other ones during August and September, they separate into anticyclones whose diameters are about 50 km in October, and then they gradually shrink in early winter. The Pacific water transport across the Beaufort shelf break reaches maximum (about 0.3 Sv, where 1 Sv ≡ 106 m3 s−1) during late summer and early autumn when the eddy activities are enhanced. The sensitivity experiments indicate that the shelf-to-basin transport differs depending on the sea ice condition in the Chukchi Sea during summer. The difference is found to be associated with the jet strength, which is closely related to the location of the sea ice margin. When the sea ice margin is located in the Canada Basin, the jet is stronger, and mesoscale eddy activities and corresponding inflow of the Pacific water into the basin are enhanced. When sea ice remains in the shelf even in late summer, sea ice ocean stress plays a great role in braking the jet and the consequent suppression of the shelf-to-basin transport. The freshwater and heat transports into the basin associated with the Pacific water inflow depend on not only the volume flux but also on surface buoyancy flux in the shelf, which varies according to sea ice condition. The freshwater transport referenced to 34.8 psu is 259 km3 yr−1 in the medium sea ice extent case. Although the Pacific water becomes freshened as a result of its mixing with sea ice meltwater in the large extent case, the freshwater transport is still less than in the other cases. The heat transport is promoted by preferable absorption of solar heat in addition to energetic eddy-induced transport in the small extent case. The heat amount provided into the basin is equivalent to the reduction of sea ice thickness by about 1 m yr−1 north of the Chukchi and Beaufort shelf breaks.

2021 ◽  
Vol 8 ◽  
Author(s):  
Yingjie Wang ◽  
Na Liu ◽  
Zhanhai Zhang

Over the past few decades, the areal extent of the Arctic sea ice cover has decreased. During the winter of 2017, negative sea ice concentration anomalies occurred mainly in the Chukchi Sea and adjacent seas. The properties of Pacific water through the Bering Strait have changed in recent years. To highlight the role of the Pacific inflow during the 2017 Arctic sea ice retreat, we used mooring measurements and conductivity–temperature–depth (CTD) data to quantify the effect of inflow on sea ice in the Chukchi shelf. In September 2017, the temperature of the Pacific inflow was relatively high compared with the multi-year average, especially in the shelf north of 69°N where the temperature anomaly was generally greater than 1°C. The average heat content of each CTD station in September 2017 ranged from 0.77 to 1.58 GJ m–2, where each station was 0.25 GJ m–2 higher than the multi-year average. In the central shelf of the Chukchi Sea, the temperature of the 25–40 m layer increased after late May, and decreased after mid-September. The Pacific inflow could have provided a large amount of heat to the Chukchi shelf, the accumulated convective heat transported to the surface from September to October was approximately 1.68 × 1018 J and it impacted the sea ice growth conditions.


Polar Record ◽  
2007 ◽  
Vol 43 (1) ◽  
pp. 67-70 ◽  
Author(s):  
William Barr

In 1933, the steamer Chelyuskin sailed from Murmansk, east bound to attempt a transit of the Northern Sea Route to the Pacific, in order to demonstrate that such a transit could be achieved in one season. The vessel became beset in heavy ice in the Chukchi Sea, and after drifting with the ice for over two months, was crushed and sank on 13 February 1934. Apart from one fatality, her entire complement of 104 people was able to establish a camp on the sea ice. The Soviet government organised an impressive aerial evacuation, under which all were rescued. Following several unsuccessful attempts, the wreck was located on the bed of the Chukchi Sea by a Russian expedition, Chelyuskin-70, in mid-September 2006. Two small components of the ship's superstructure were recovered by divers and were sent to the ship's builders, Burmeister and Wein of Copenhagen, for identification.


2016 ◽  
Vol 116 ◽  
pp. 236-252 ◽  
Author(s):  
Yoshiko Kondo ◽  
Hajime. Obata ◽  
Nanako Hioki ◽  
Atsushi Ooki ◽  
Shigeto Nishino ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255837
Author(s):  
Catherine Lalande ◽  
Jacqueline M. Grebmeier ◽  
Andrew M. P. McDonnell ◽  
Russell R. Hopcroft ◽  
Stephanie O’Daly ◽  
...  

Unusually warm conditions recently observed in the Pacific Arctic region included a dramatic loss of sea ice cover and an enhanced inflow of warmer Pacific-derived waters. Moored sediment traps deployed at three biological hotspots of the Distributed Biological Observatory (DBO) during this anomalously warm period collected sinking particles nearly continuously from June 2017 to July 2019 in the northern Bering Sea (DBO2) and in the southern Chukchi Sea (DBO3), and from August 2018 to July 2019 in the northern Chukchi Sea (DBO4). Fluxes of living algal cells, chlorophyll a (chl a), total particulate matter (TPM), particulate organic carbon (POC), and zooplankton fecal pellets, along with zooplankton and meroplankton collected in the traps, were used to evaluate spatial and temporal variations in the development and composition of the phytoplankton and zooplankton communities in relation to sea ice cover and water temperature. The unprecedented sea ice loss of 2018 in the northern Bering Sea led to the export of a large bloom dominated by the exclusively pelagic diatoms Chaetoceros spp. at DBO2. Despite this intense bloom, early sea ice breakup resulted in shorter periods of enhanced chl a and diatom fluxes at all DBO sites, suggesting a weaker biological pump under reduced ice cover in the Pacific Arctic region, while the coincident increase or decrease in TPM and POC fluxes likely reflected variations in resuspension events. Meanwhile, the highest transport of warm Pacific waters during 2017–2018 led to a dominance of the small copepods Pseudocalanus at all sites. Whereas the export of ice-associated diatoms during 2019 suggested a return to more typical conditions in the northern Bering Sea, the impact on copepods persisted under the continuously enhanced transport of warm Pacific waters. Regardless, the biological pump remained strong on the shallow Pacific Arctic shelves.


2017 ◽  
Vol 14 (24) ◽  
pp. 5727-5739 ◽  
Author(s):  
Naohiro Kosugi ◽  
Daisuke Sasano ◽  
Masao Ishii ◽  
Shigeto Nishino ◽  
Hiroshi Uchida ◽  
...  

Abstract. In September 2013, we observed an expanse of surface water with low CO2 partial pressure (pCO2sea) (< 200 µatm) in the Chukchi Sea of the western Arctic Ocean. The large undersaturation of CO2 in this region was the result of massive primary production after the sea-ice retreat in June and July. In the surface of the Canada Basin, salinity was low (< 27) and pCO2sea was closer to the air–sea CO2 equilibrium (∼  360 µatm). From the relationships between salinity and total alkalinity, we confirmed that the low salinity in the Canada Basin was due to the larger fraction of meltwater input (∼  0.16) rather than the riverine discharge (∼  0.1). Such an increase in pCO2sea was not so clear in the coastal region near Point Barrow, where the fraction of riverine discharge was larger than that of sea-ice melt. We also identified low pCO2sea (< 250 µatm) in the depth of 30–50 m under the halocline of the Canada Basin. This subsurface low pCO2sea was attributed to the advection of Pacific-origin water, in which dissolved inorganic carbon is relatively low, through the Chukchi Sea where net primary production is high. Oxygen supersaturation (> 20 µmol kg−1) in the subsurface low pCO2sea layer in the Canada Basin indicated significant net primary production undersea and/or in preformed condition. If these low pCO2sea layers surface by wind mixing, they will act as additional CO2 sinks; however, this is unlikely because intensification of stratification by sea-ice melt inhibits mixing across the halocline.


Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
Igor A. Dmitrenko ◽  
Sergei A. Kirillov ◽  
Paul G. Myers ◽  
Alexandre Forest ◽  
Bruno Tremblay ◽  
...  

Pacific water contributes significantly to the Arctic Ocean freshwater budget. Recent increases in Arctic freshwater flux, also affected by the Pacific-derived Arctic water, impact the Atlantic overturning circulation with implications for global climate. The interannual variability of the Pacific water outflow remains poorly understood, partly due to different branches of the Pacific water flow in the Arctic Ocean. The shelfbreak current over the Beaufort Sea continental slope transports ~50% of the Pacific-derived water eastward along the Beaufort Sea continental slope towards the Canadian Archipelago. The oceanographic mooring deployed over the eastern Beaufort Sea continental slope in October 2003 recorded current velocities through depths of 28–108 m until September 2005. Data analysis revealed that these highly energetic currents have two different modes of depth-dependent behaviour. The downwelling-favourable wind associated with cyclones passing north of the Beaufort Sea continental slope toward the Canadian Archipelago generates depth-intensified shelfbreak currents with along-slope northeastward flow. A surface Ekman on-shore transport and associated increase of the sea surface heights over the shelf produce a cross-slope pressure gradient that drives an along-slope northeastward barotropic flow, in the same direction as the wind. In contrast, the upwelling-favourable wind associated with deep Aleutian Low cyclones over the Alaskan Peninsula and/or Aleutian Island Arc leads to surface-intensified currents with along-slope westward flow. This northeasterly wind generates a surface Ekman transport that moves surface waters offshore. The associated cross-slope pressure gradient drives an along-slope southwestward barotropic flow. The wind-driven barotropic flow generated by upwelling and downwelling is superimposed on the background bottom-intensified shelfbreak current. For downwelling, this flow amplifies the depth-intensified background baroclinic circulation with enhanced Pacific water transport towards the Canadian Archipelago. For upwelling, the shelfbreak current is reversed, which results in surface-intensified flow in the opposite direction. These results are supported by numerical simulations.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255686
Author(s):  
Chelsea W. Koch ◽  
Lee W. Cooper ◽  
Ryan J. Woodland ◽  
Jacqueline M. Grebmeier ◽  
Karen E. Frey ◽  
...  

The expected reduction of ice algae with declining sea ice may prove to be detrimental to the Pacific Arctic ecosystem. Benthic organisms that rely on sea ice organic carbon (iPOC) sustain benthic predators such as the Pacific walrus (Odobenus rosmarus divergens). The ability to track the trophic transfer of iPOC is critical to understanding its value in the food web, but prior methods have lacked the required source specificity. We analyzed the H-Print index, based on biomarkers of ice algae versus phytoplankton contributions to organic carbon in marine predators, in Pacific walrus livers collected in 2012, 2014 and 2016 from the Northern Bering Sea (NBS) and Chukchi Sea. We paired these measurements with stable nitrogen isotopes (δ15N) to estimate trophic position. We observed differences in the contribution of iPOC in Pacific walrus diet between regions, sexes, and age classes. Specifically, the contribution of iPOC to the diet of Pacific walruses was higher in the Chukchi Sea (52%) compared to the NBS (30%). This regional difference is consistent with longer annual sea ice persistence in the Chukchi Sea. Within the NBS, the contribution of iPOC to walrus spring diet was higher in females (~45%) compared to males (~30%) for each year (p < 0.001), likely due to specific foraging behavior of females to support energetic demands associated with pregnancy and lactation. Within the Chukchi Sea, the iPOC contribution was similar between males and females, yet higher in juveniles than in adults. Despite differences in the origin of organic carbon fueling the system (sea ice versus pelagic derived carbon), the trophic position of adult female Pacific walruses was similar between the NBS and Chukchi Sea (3.2 and 3.5, respectively), supporting similar diets (i.e. clams). Given the higher quality of organic carbon from ice algae, the retreat of seasonal sea ice in recent decades may create an additional vulnerability for female and juvenile Pacific walruses and should be considered in management of the species.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 888
Author(s):  
Hiroshi Kuroda ◽  
Yukiko Taniuchi ◽  
Hiromi Kasai ◽  
Takuya Nakanowatari ◽  
Takashi Setou

This study proposes an analysis methodology to address how very rare marine extremes can be understood using limited data. In summer 2016, extreme weather and marine events occurred simultaneously around the Pacific shelf off southeastern Hokkaido, Japan. Six successive tropical storms brought extreme precipitation and an anticyclonic mesoscale eddy of subtropical Kuroshio water closely approached the coast, locally causing marine heat waves. We examined how these compound extremes affected oceanographic conditions on the coastal shelf by analyzing data from ship surveys in October 2016 on the Pacific shelf and outputs from a realistic ocean model. Climatologically, warm, high-salinity (33.0–33.7) subtropical water from the Okhotsk Sea (modified Soya Warm Current water) is distributed near the sea surface on the Pacific shelf in October and transported by the along-shelf boundary current. In 2016, however, a vertically well-mixed low-salinity (<33.0) layer associated with the heavy rainfall was observed at 0–50 m depth on the shelf, salinity maxima (≥33.7) associated with Kuroshio water from the mesoscale eddy occurred at 50–150 m depth on the slope, and baroclinic jets formed along the salinity front near the shelfbreak. These observed salinity structures were reproduced by a 1/50° ocean model. Particle-tracking experiments revealed that the low-salinity water originated mainly off eastern Hokkaido, where heavy rainfall events occurred in August, and was modified by mixing with Soya Warm Current water before transport to the Pacific shelf.


2019 ◽  
Vol 49 (2) ◽  
pp. 369-383 ◽  
Author(s):  
Qiang Wang ◽  
John Marshall ◽  
Jeffery Scott ◽  
Gianluca Meneghello ◽  
Sergey Danilov ◽  
...  

AbstractBased on analysis of observational data it has been suggested that a negative feedback of ice–ocean stress coupling may limit freshwater accumulation in the Beaufort Gyre (BG). In this paper we explore how this feedback can significantly contribute to BG stabilization in an anticyclonic wind regime. We use an ice–ocean model and turn on and off the feedback in simulations to elucidate the role of the feedback. When a persistent anticyclonic wind anomaly is applied over the BG, liquid freshwater content (FWC) increases because of enhanced Ekman downwelling. As a consequence, ocean surface geostrophic currents speed up. However, the spinup of sea ice is weaker than the acceleration of surface geostrophic currents during wintertime, because of strong sea ice internal stress when ice concentration is high and ice is thick. This leads to cyclonic anomalies in the ice–ocean relative velocity and stress over the BG. The resultant seasonal Ekman upwelling anomaly reduces freshwater accumulation by about 1/4 as compared to a simulation with the negative feedback turned off in a control experiment, with a reduction range of 1/10–1/3 in all experiments conducted. We show that the feedback is more effective when the model’s mesoscale eddy diffusivity is smaller or when sea ice internal stress is stronger. Finally, we argue that the ice–ocean stress feedback may become less significant as the Arctic warms and sea ice declines.


Sign in / Sign up

Export Citation Format

Share Document