scholarly journals Sea Ice Reduction During Winter of 2017 Due to Oceanic Heat Supplied by Pacific Water in the Chukchi Sea, West Arctic Ocean

2021 ◽  
Vol 8 ◽  
Author(s):  
Yingjie Wang ◽  
Na Liu ◽  
Zhanhai Zhang

Over the past few decades, the areal extent of the Arctic sea ice cover has decreased. During the winter of 2017, negative sea ice concentration anomalies occurred mainly in the Chukchi Sea and adjacent seas. The properties of Pacific water through the Bering Strait have changed in recent years. To highlight the role of the Pacific inflow during the 2017 Arctic sea ice retreat, we used mooring measurements and conductivity–temperature–depth (CTD) data to quantify the effect of inflow on sea ice in the Chukchi shelf. In September 2017, the temperature of the Pacific inflow was relatively high compared with the multi-year average, especially in the shelf north of 69°N where the temperature anomaly was generally greater than 1°C. The average heat content of each CTD station in September 2017 ranged from 0.77 to 1.58 GJ m–2, where each station was 0.25 GJ m–2 higher than the multi-year average. In the central shelf of the Chukchi Sea, the temperature of the 25–40 m layer increased after late May, and decreased after mid-September. The Pacific inflow could have provided a large amount of heat to the Chukchi shelf, the accumulated convective heat transported to the surface from September to October was approximately 1.68 × 1018 J and it impacted the sea ice growth conditions.

2019 ◽  
Vol 32 (5) ◽  
pp. 1361-1380 ◽  
Author(s):  
J. Ono ◽  
H. Tatebe ◽  
Y. Komuro

Abstract The mechanisms for and predictability of a drastic reduction in the Arctic sea ice extent (SIE) are investigated using the Model for Interdisciplinary Research on Climate (MIROC) version 5.2. Here, a control (CTRL) with forcing fixed at year 2000 levels and perfect-model ensemble prediction (PRED) experiments are conducted. In CTRL, three (model years 51, 56, and 57) drastic SIE reductions occur during a 200-yr-long integration. In year 56, the sea ice moves offshore in association with a positive phase of the summer Arctic dipole anomaly (ADA) index and melts due to heat input through the increased open water area, and the SIE drastically decreases. This provides the preconditioning for the lowest SIE in year 57 when the Arctic Ocean interior is in a warm state and the spring sea ice volume has a large negative anomaly due to drastic ice reduction in the previous year. Although the ADA is one of the key mechanisms behind sea ice reduction, it does not always cause a drastic reduction. Our analysis suggests that wind direction favoring offshore ice motion is a more important factor for drastic ice reduction events. In years experiencing drastic ice reduction events, the September SIE can be skillfully predicted in PRED started from July, but not from April. This is because the forecast errors for the July sea level pressure and those for the sea ice concentration and sea ice thickness along the ice edge are large in PRED started from April.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tsubasa Kodaira ◽  
Takuji Waseda ◽  
Takehiko Nose ◽  
Jun Inoue

AbstractArctic sea ice is rapidly decreasing during the recent period of global warming. One of the significant factors of the Arctic sea ice loss is oceanic heat transport from lower latitudes. For months of sea ice formation, the variations in the sea surface temperature over the Pacific Arctic region were highly correlated with the Pacific Decadal Oscillation (PDO). However, the seasonal sea surface temperatures recorded their highest values in autumn 2018 when the PDO index was neutral. It is shown that the anomalous warm seawater was a rapid ocean response to the southerly winds associated with episodic atmospheric blocking over the Bering Sea in September 2018. This warm seawater was directly observed by the R/V Mirai Arctic Expedition in November 2018 to significantly delay the southward sea ice advance. If the atmospheric blocking forms during the PDO positive phase in the future, the annual maximum Arctic sea ice extent could be dramatically reduced.


2021 ◽  
Author(s):  
Vladimir Semenov ◽  
Tatiana Matveeva

<p>Global warming in the recent decades has been accompanied by a rapid recline of the Arctic sea ice area most pronounced in summer (10% per decade). To understand the relative contribution of external forcing and natural variability to the modern and future sea ice area changes, it is necessary to evaluate a range of long-term variations of the Arctic sea ice area in the period before a significant increase in anthropogenic emissions of greenhouse gases into the atmosphere. Available observational data on the spatiotemporal dynamics of Arctic sea ice until 1950s are characterized by significant gaps and uncertainties. In the recent years, there have appeared several reconstructions of the early 20<sup>th</sup> century Arctic sea ice area that filled the gaps by analogue methods or utilized combined empirical data and climate model’s output. All of them resulted in a stronger that earlier believed negative sea ice area anomaly in the 1940s concurrent with the early 20<sup>th</sup> century warming (ETCW) peak. In this study, we reconstruct the monthly average gridded sea ice concentration (SIC) in the first half of the 20th century using the relationship between the spatiotemporal features of SIC variability, surface air temperature over the Northern Hemisphere extratropical continents, sea surface temperature in the North Atlantic and North Pacific, and sea level pressure. In agreement with a few previous results, our reconstructed data also show a significant negative anomaly of the Arctic sea ice area in the middle of the 20th century, however with some 15% to 30% stronger amplitude, about 1.5 million km<sup>2</sup> in September and 0.7 million km<sup>2</sup> in March. The reconstruction demonstrates a good agreement with regional Arctic sea ice area data when available and suggests that ETWC in the Arctic has been accompanied by a concurrent sea ice area decline of a magnitude that have been exceeded only in the beginning of the 21<sup>st</sup> century.</p>


2020 ◽  
Vol 33 (10) ◽  
pp. 4009-4025
Author(s):  
Shuyu Zhang ◽  
Thian Yew Gan ◽  
Andrew B. G. Bush

AbstractUnder global warming, Arctic sea ice has declined significantly in recent decades, with years of extremely low sea ice occurring more frequently. Recent studies suggest that teleconnections with large-scale climate patterns could induce the observed extreme sea ice loss. In this study, a probabilistic analysis of Arctic sea ice was conducted using quantile regression analysis with covariates, including time and climate indices. From temporal trends at quantile levels from 0.01 to 0.99, Arctic sea ice shows statistically significant decreases over all quantile levels, although of different magnitudes at different quantiles. At the representative extreme quantile levels of the 5th and 95th percentiles, the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Pacific–North American pattern (PNA) have more significant influence on Arctic sea ice than El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the Atlantic multidecadal oscillation (AMO). Positive AO as well as positive NAO contribute to low winter sea ice, and a positive PNA contributes to low summer Arctic sea ice. If, in addition to these conditions, there is concurrently positive AMO and PDO, the sea ice decrease is amplified. Teleconnections between Arctic sea ice and the climate patterns were demonstrated through a composite analysis of the climate variables. The anomalously strong anticyclonic circulation during the years of positive AO, NAO, and PNA promotes more sea ice export through Fram Strait, resulting in excessive sea ice loss. The probabilistic analyses of the teleconnections between the Arctic sea ice and climate patterns confirm the crucial role that the climate patterns and their combinations play in overall sea ice reduction, but particularly for the low and high quantiles of sea ice concentration.


1987 ◽  
Vol 9 ◽  
pp. 252-252
Author(s):  
G. Wendler ◽  
M. Jeffries ◽  
Y. Nagashima

Satellite imagery has substantially improved the quality of sea-Ice observation over the last decades. Therefore, for a 25-year period, a statistical study based on the monthly Arctic sea-ice data and the monthly mean 700 mbar maps of the Northern Hemisphere was carried out to establish the relationships between sea-ice conditions and the general circulation of the atmosphere. It was found that sea-ice conditions have two opposing effects on the zonal circulation intensity, depending on the season. Heavier than normal ice in winter causes stronger than normal zonal circulation in the subsequent months, whereas heavier than normal ice in the summer–fall causes weaker zonal circulation in the subsequent months. Analyzing the two sectors, the Atlantic and Pacific ones separately, a negative correlation was found, which means a heavy ice year in the Atlantic Ocean is normally associated with a light one in the Pacific Ocean and vice versa.


2015 ◽  
Vol 28 (14) ◽  
pp. 5477-5509 ◽  
Author(s):  
Mitchell Bushuk ◽  
Dimitrios Giannakis ◽  
Andrew J. Majda

Abstract Arctic sea ice reemergence is a phenomenon in which spring sea ice anomalies are positively correlated with fall anomalies, despite a loss of correlation over the intervening summer months. This work employs a novel data analysis algorithm for high-dimensional multivariate datasets, coupled nonlinear Laplacian spectral analysis (NLSA), to investigate the regional and temporal aspects of this reemergence phenomenon. Coupled NLSA modes of variability of sea ice concentration (SIC), sea surface temperature (SST), and sea level pressure (SLP) are studied in the Arctic sector of a comprehensive climate model and in observations. It is found that low-dimensional families of NLSA modes are able to efficiently reproduce the prominent lagged correlation features of the raw sea ice data. In both the model and observations, these families provide an SST–sea ice reemergence mechanism, in which melt season (spring) sea ice anomalies are imprinted as SST anomalies and stored over the summer months, allowing for sea ice anomalies of the same sign to reappear in the growth season (fall). The ice anomalies of each family exhibit clear phase relationships between the Barents–Kara Seas, the Labrador Sea, and the Bering Sea, three regions that compose the majority of Arctic sea ice variability. These regional phase relationships in sea ice have a natural explanation via the SLP patterns of each family, which closely resemble the Arctic Oscillation and the Arctic dipole anomaly. These SLP patterns, along with their associated geostrophic winds and surface air temperature advection, provide a large-scale teleconnection between different regions of sea ice variability. Moreover, the SLP patterns suggest another plausible ice reemergence mechanism, via their winter-to-winter regime persistence.


2020 ◽  
Author(s):  
Dongxiao Zhang ◽  
Chidong Zhang ◽  
Jessica Cross ◽  
Calvin Mordy ◽  
Edward Cokelet ◽  
...  

<p>The Arctic has been rapidly changing over the last decade, with more frequent unusually early ice retreats in late spring and summer. Vast Arctic areas that were usually covered by sea ice are now exposed to the atmosphere because of earlier ice retreat and later arrival. Assessment of consequential changes in the energy cycle of the Arctic and their potential feedback to the variability of Arctic sea ice and marine ecosystems critically depends on the accuracy of surface flux estimates. In the Pacific sector of the Arctic, earlier ice retreat generally follows the warm Pacific water inflow into the Arctic through the Bering and Chukchi Seas. Due to ice coverage and irregularity of seasonal ice retreats, air-sea flux measurements following the ice retreats has been difficult to plan and execute. A recent technology development is the Unmanned Surface Vehicles (USVs): The long-range USV saildrones are powered by green energy with wind for propulsion and solar energy for instrumentation and vehicle control. NOAA/PMEL and University of Washington scientists have made surface measurements of the ocean and atmosphere in the Pacific Arctic using saildrones for the past several years. In 2019, for the 1<sup>st</sup> time a fleet of six saildrones capable of measuring both turbulent and radiative heat fluxes, wind stress, air-sea CO<sub>2</sub> flux and upper ocean currents was deployed to follow the ice retreat from May to October, with five of the USVs into the Chukchi and Beaufort Seas while one staying in the Bering Sea. These in situ measurements provide rare opportunities of estimating air-sea energy fluxes during a period of rapid reduction in Arctic sea ice in different scenarios: open water after ice melt, free-floating ice bands, and marginal ice zones. In this study, Arctic air-sea heat and momentum fluxes measured by the saildrones are compared to gridded flux products based on satellite data and numerical models to investigate the circumstances under which they agree and differ, and the main sources of their discrepancies. The results will quantify the uncertainty margins in the gridded flux products and provide insights needed to improve their accuracy. We will also discuss the feasibility of using USVs in sustained Arctic observing system to collect benchmark datasets of the changing surface energy fluxes due to rapid sea ice reduction and provide real time data for improved weather and ocean forecasts.  </p>


2014 ◽  
Vol 33 (12) ◽  
pp. 15-23
Author(s):  
Qinghua Yang ◽  
Jiping Liu ◽  
Zhanhai Zhang ◽  
Cuijuan Sui ◽  
Jianyong Xing ◽  
...  

2015 ◽  
Vol 15 (6) ◽  
pp. 3479-3495 ◽  
Author(s):  
Y. Zhao ◽  
T. Huang ◽  
L. Wang ◽  
H. Gao ◽  
J. Ma

Abstract. While some persistent organic pollutants (POPs) have been declining globally due to their worldwide ban since the 1980s, the declining trends of many of these toxic chemicals become less significant and in some cases their ambient air concentrations, e.g., polychlorinated biphenyls (PCBs), showed observable increase during the 2000s, disagreeing with their declining global emissions and environmental degradation. As part of the efforts to assess the influences of environmental factors on the long-term trend of POPs in the Arctic, step change points in the time series of ambient POP atmospheric concentrations collected from four arctic monitoring sites were examined using various statistical techniques. Results showed that the step change points of these POP data varied in different years and at different sites. Most step change points were found in 2001–2002 and 2007–2008. In particular, the step change points of many PCBs for 2007–2008 were coincident with the lowest arctic sea ice concentration occurring during the 2000s. The perturbations of air concentration and water–air exchange fluxes of several selected POPs averaged over the Arctic, simulated by a POP mass balance perturbation model, switched from negative to positive during the early 2000s, indicating a tendency for reversal of POPs from deposition to volatilization which coincides with a positive to negative reversal of arctic sea ice extent anomalies from 2001. Perturbed ice–air exchange flux of PCB 28 and 153 showed an increasing trend and a negative to positive reversal in 2007, the year with the lowest arctic sea ice concentration. On the other hand, perturbed ice–air exchange flux of α-hexachlorocyclohexane decreased over the period of 1995 to 2012, likely owing to its lower Henry's law constant which indicates its relatively lower tendency for volatilization from ice to air.


Sign in / Sign up

Export Citation Format

Share Document