scholarly journals On the Arctic Wintertime Climate in Global Climate Models

2011 ◽  
Vol 24 (22) ◽  
pp. 5757-5771 ◽  
Author(s):  
Gunilla Svensson ◽  
Johannes Karlsson

Abstract Energy fluxes important for determining the Arctic surface temperatures during winter in present-day simulations from the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel dataset are investigated. The model results are evaluated over different surfaces using satellite retrievals and ECMWF interim reanalysis (ERA-Interim). The wintertime turbulent heat fluxes vary substantially between models and different surfaces. The monthly median net turbulent heat flux (upward) is in the range 100–200 W m−2 and −15 to 15 W m−2 over open ocean and sea ice, respectively. The simulated net longwave radiative flux at the surface is biased high over both surfaces compared to observations but for different reasons. Over open ocean, most models overestimate the outgoing longwave flux while over sea ice it is rather the downwelling flux that is underestimated. Based on the downwelling longwave flux over sea ice, two categories of models are found. One group of models that shows reasonable downwelling longwave fluxes, compared with observations and ERA-Interim, is also associated with relatively high amounts of precipitable water as well as surface skin temperatures. This group also shows more uniform airmass properties over the Arctic region possibly as a result of more frequent events of warm-air intrusion from lower latitudes. The second group of models underestimates the downwelling longwave radiation and is associated with relatively low surface skin temperatures as well as low amounts of precipitable water. These models also exhibit a larger decrease in the moisture and temperature profiles northward in the Arctic region, which might be indicative of too stagnant conditions in these models.

Nature ◽  
2003 ◽  
Vol 425 (6961) ◽  
pp. 947-950 ◽  
Author(s):  
Seymour Laxon ◽  
Neil Peacock ◽  
Doug Smith

2012 ◽  
Vol 194 (23) ◽  
pp. 6688-6688 ◽  
Author(s):  
Ye Yin ◽  
Guidong Yue ◽  
Qiang Gao ◽  
Zhiyong Wang ◽  
Fang Peng ◽  
...  

ABSTRACTPedobacter arcticussp. nov. was originally isolated from tundra soil collected from Ny-Ålesund, in the Arctic region of Norway. It is a Gram-negative bacterium which shows bleb-shaped appendages on the cell surface. Here, we report the draft annotated genome sequence ofPedobacter arcticussp. nov., which belongs to the genusPedobacter.


Author(s):  
Peyton K. Capute ◽  
Ryan D. Torn

AbstractArctic cyclones (ACs) are synoptic scale features that can be associated with strong, intense winds over the Arctic region for long periods of time, potentially leading to rapid declines of sea ice during the summer. As a consequence, sea ice predictions may rely on the predictability of cyclone-related wind speed and direction, which critically depends on the cyclone track and intensity. Despite this, there are relatively few studies that have documented the predictability of ACs during the summer, beyond a few case studies, nor has there been an extensive comparison of whether these cyclones are more or less predictable relative to comparable midlatitude cyclones, which have been studied in greater detail. The goal of this study is to document the practical predictability of AC position and intensity forecasts over 100 cases and compare it to 89 Atlantic basin midlatitude cyclones using the Global Ensemble Forecast System (GEFS) Reforecast V2. This dataset contains 11-member ensemble forecasts initialized daily from 1985-present using a fixed model. In this study, 1 and 3 day forecast hours are compared, where predictability is defined as the ensemble mean root mean square error and ensemble standard deviation (SD). Although Atlantic basin cyclone tracks are characterized by higher predictability relative to comparable ACs, intensity predictability is higher for ACs. In addition, storms characterized by low ensemble SD and predictability are found in regions of higher baroclinic instability than storms characterized by high predictability. There appears to be little, if any, relationship between latent heat release and precipitable water and predictability.


2020 ◽  
pp. 1-67
Author(s):  
Shuoyi Ding ◽  
Bingyi Wu ◽  
Wen Chen

AbstractThe present study investigated dominant characteristics of autumn Arctic sea ice concentration (SIC) interannual variations and impacts of September-October (SO) mean SIC anomalies in the East Siberian-Chukchi-Beaufort (EsCB) Seas on winter Eurasian climate variability. Results showed that the decreased SO EsCB sea ice is favorable for tropospheric warming and positive geopotential height anomaly over the Arctic region one month later through transporting much more heat fluxes to the atmosphere from the open water. When entering the early winter (ND(0)J(1)), enhanced upward propagation of quasi-stationary planetary waves in the mid-high latitudes generates anomalous Eliassen-Palm flux convergence in the upper troposphere, which decelerates the westerly winds and maintains the positive geopotential height anomaly in the Arctic region. This anticyclonic anomaly extends southward into the central-western Eurasia and leads to evident surface cooling there. Two months later, it further develops toward downstream accompanied by a deepened trough, making the northeastern China experience a colder late winter (JFM(1)). Meanwhile, an anticyclonic anomaly over the eastern North Pacific excites a horizontal eastward wave train and contributes to positive (negative) geopotential height anomaly around the Greenland (Europe), favoring negative surface temperature anomaly over western Europe. In addition, the stratospheric polar vortex is also significantly weakened in the wintertime, which is attributed to decreased meridional temperature gradient and decelerated westerly winds provides a favorable condition for much more quasi-stationary planetary waves propagating into the stratosphere. Some major features of atmospheric responses to EsCB sea ice loss are well reproduced in the CAM4 sensitivity experiments.


2019 ◽  
Vol 19 (9) ◽  
pp. 6419-6435 ◽  
Author(s):  
Rashed Mahmood ◽  
Knut von Salzen ◽  
Ann-Lise Norman ◽  
Martí Galí ◽  
Maurice Levasseur

Abstract. Dimethylsulfide (DMS), outgassed from ocean waters, plays an important role in the climate system, as it oxidizes to methane sulfonic acid (MSA) and sulfur dioxide (SO2), which can lead to the formation of sulfate aerosol. Newly formed sulfate aerosol resulting from DMS oxidation may grow by condensation of gases, in-cloud oxidation, and coagulation to sizes where they may act as cloud condensation nuclei (CCN) and influence cloud properties. Under future global warming conditions, sea ice in the Arctic region is expected to decline significantly, which may lead to increased emissions of DMS from the open ocean and changes in cloud regimes. In this study we evaluate impacts of DMS on Arctic sulfate aerosol budget, changes in cloud droplet number concentration (CDNC), and cloud radiative forcing in the Arctic region under current and future sea ice conditions using an atmospheric global climate model. Given that future DMS concentrations are highly uncertain, several simulations with different surface seawater DMS concentrations and spatial distributions in the Arctic were performed in order to determine the sensitivity of sulfate aerosol budgets, CDNC, and cloud radiative forcing to Arctic surface seawater DMS concentrations. For any given amount and distribution of Arctic surface seawater DMS, similar amounts of sulfate are produced by oxidation of DMS in 2000 and 2050 despite large increases in DMS emission in the latter period due to sea ice retreat in the simulations. This relatively low sensitivity of sulfate burden is related to enhanced sulfate wet removal by precipitation in 2050. However simulated aerosol nucleation rates are higher in 2050, which results in an overall increase in CDNC and substantially more negative cloud radiative forcing. Thus potential future reductions in sea ice extent may cause cloud albedos to increase, resulting in a negative climate feedback on radiative forcing in the Arctic associated with ocean DMS emissions.


2011 ◽  
Vol 11 (2) ◽  
pp. 4913-4951 ◽  
Author(s):  
G. P. Peters ◽  
T. B. Nilssen ◽  
L. Lindholt ◽  
M. S. Eide ◽  
S. Glomsrød ◽  
...  

Abstract. The Arctic sea-ice is retreating faster than predicted by climate models and could become ice free during summer this century. The reduced sea-ice extent may effectively "unlock" the Arctic Ocean to increased human activities such as transit shipping and expanded oil and gas production. Travel time between Europe and the north Pacific Region can be reduced by up to 50% with low sea-ice levels and the use of this route could increase substantially as the sea-ice retreats. Oil and gas activities already occur in the Arctic region and given the large undiscovered petroleum resources increased activity could be expected with reduced sea-ice. We use a detailed global energy market model and a bottom-up shipping model with a sea-ice module to construct emission inventories of Arctic shipping and petroleum activities in 2030 and 2050. The emission inventories are on a 1× 1 degree grid and cover both short-lived pollutants and ozone pre-cursors (SO2, NOx, CO, NMVOC, BC, OC) and the long-lived greenhouse gases (CO2, CH4, N2O). We find rapid growth in transit shipping due to increased profitability with the shorter transit times compensating for increased costs in traversing areas of sea-ice. Oil and gas production remains relatively stable leading to reduced emissions from emission factor improvements. The location of oil and gas production moves into locations requiring more ship transport relative to pipeline transport, leading to rapid emissions growth from oil and gas transport via ship. Our emission inventories for the Arctic region will be used as input into chemical transport, radiative transfer, and climate models to quantify the role of Arctic activities in climate change compared to similar emissions occurring outside of the Arctic region.


2014 ◽  
Vol 8 (5) ◽  
pp. 4823-4847 ◽  
Author(s):  
A. Belleflamme ◽  
X. Fettweis ◽  
M. Erpicum

Abstract. A significant increase in the summertime occurrence of a high pressure area over the Beaufort Sea and Greenland has been observed from the beginning of the 2000's, and particularly between 2007 and 2012. These circulation anomalies are likely partly responsible for the enhanced Greenland ice sheet melt as well as the Arctic sea ice loss observed since 2007. Therefore, it is interesting to analyse whether similar conditions might have happened since the late 19th century over the Arctic region. We have used an atmospheric circulation type classification based on daily mean sea level pressure and 500 hPa geopotential height data from four reanalysis datasets (ERA-Interim, ERA-40, NCEP/NCAR, and 20CRv2) to put the recent circulation anomalies in perspective with the atmospheric circulation variability since 1871. We found that circulation conditions similar to 2007–2012 have occurred in the past, despite a higher uncertainty of the reconstructed circulation before 1940. But the recent anomalies largely exceed the interannual variability of the atmospheric circulation of the Arctic region. These circulation anomalies are linked with the North Atlantic Oscillation suggesting that they are not limited to the Arctic. Finally, they favour summertime Arctic sea ice loss.


2014 ◽  
Vol 8 (6) ◽  
pp. 2089-2100 ◽  
Author(s):  
A. C. Bliss ◽  
M. R. Anderson

Abstract. An updated version (Version 3) of the Snow Melt Onset Over Arctic Sea Ice from SMMR (Scanning Multichannel Microwave Radiometer) and SSM/I-SSMIS (Special Sensor Microwave/Imager-Special Sensor Microwave Imager/Sounder) Brightness Temperatures data set is now available. The data record has been reprocessed and extended to cover the years 1979–2012. From this data set, a statistical summary of melt onset (MO) dates on Arctic sea ice is presented. The mean MO date for the Arctic Region is 13 May (132.5 DOY – day of year) with a standard deviation of ±7.3 days. Regionally, mean MO dates vary from 15 March (73.2 DOY) in the St. Lawrence Gulf to 10 June (160.9 DOY) in the Central Arctic. Statistically significant decadal trends indicate that MO is occurring 6.6 days decade−1 earlier in the year for the Arctic Region. Regionally, MO trends are as great as −11.8 days decade−1 in the East Siberian Sea. The Bering Sea is an outlier and MO is occurring 3.1 days decade−1 later in the year.


2021 ◽  
Author(s):  
Iris Papakonstantinou-Presvelou ◽  
Johannes Quaas

<p>This study investigates low-level ice clouds in the Arctic and their potential relation to the surface aerosols. These aerosols or ice nucleating particles (INPs), are necessary for the heterogeneous nucleation of ice in temperatures above -38°C. Several studies in the past have investigated the sources of INPs and their nucleating behavior with response to the temperature. According to these studies, it has been suggested that a marine source of INPs coming from sea spray is able to nucleate ice in temperatures close to -5<sup>o</sup>C. What we do here is a large-scale comparison of boundary-layer ice clouds over open ocean and sea ice, over the whole Arctic region for the time period of 2006-2016. We use for this purpose a satellite-retrieved quantity, the ice crystal number concentration (N<sub>i</sub>), which we investigate in relation to the temperature. We study clouds with regard to the region and season they form and we examine their coupling to the surface. Our findings show - contrary to previous expectation - enhanced ice crystal numbers over sea ice compared to open ocean, in temperatures above -10<sup>o</sup>C. In lower temperatures this difference still persists for the lower Arctic latitudes (<70<sup>o</sup>N), especially for clouds that are coupled to the surface.</p>


Sign in / Sign up

Export Citation Format

Share Document