scholarly journals Sensitivity of ENSO to Stratification in a Recharge–Discharge Conceptual Model

2011 ◽  
Vol 24 (16) ◽  
pp. 4332-4349 ◽  
Author(s):  
Sulian Thual ◽  
Boris Dewitte ◽  
Soon-Il An ◽  
Nadia Ayoub

Abstract El Niño–Southern Oscillation (ENSO) is driven by large-scale ocean–atmosphere interactions in the equatorial Pacific and is sensitive to change in the mean state. Whereas conceptual models of ENSO usually consider the depth of the thermocline to be influential on the stability of ENSO, the observed changes in the depth of the 20°C isotherm are rather weak, on the order of approximately 5 m over the last decades. Conversely, change in stratification that affects both the intensity and sharpness of the thermocline can be pronounced. Here, the two-strip conceptual model of An and Jin is extended to include three parameters (i.e., the contribution of the first three baroclinic modes) that account for the main characteristics of the mean thermocline vertical structure. A stability analysis of the model is carried out that indicates that the model sustains a lower ENSO mode when the high-order baroclinic modes (M2 and M3) are considered. The sensitivity of the model solution to the coupling efficiency further indicates that, in the weak coupling regime, the model allows for several ocean basin modes at low frequency. The latter can eventually merge into a low-frequency and unstable mode representative of ENSO as the coupling efficiency increases. Also, higher baroclinic modes project more energy onto the ocean dynamics for the same input of wind forcing. Therefore, in this study’s model, a shallower, yet more intense mean thermocline may still sustain a strong (i.e., unstable) and low-frequency ENSO mode. Sensitivity tests to the strength of the two dominant feedbacks (thermocline vs zonal advection) indicate that the presence of high-order baroclinic modes favors the bifurcation from a low-frequency regime to a higher-frequency regime when the zonal advective feedback is enhanced. It is suggested that the proposed formalism can be used to interpret and measure the sensitivity of coupled general circulation models to climate change.

2008 ◽  
Vol 21 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Soon-Il An ◽  
Jong-Seong Kug ◽  
Yoo-Geun Ham ◽  
In-Sik Kang

Abstract The multidecadal modulation of the El Niño–Southern Oscillation (ENSO) due to greenhouse warming has been analyzed herein by means of diagnostics of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs) and the eigenanalysis of a simplified version of an intermediate ENSO model. The response of the global-mean troposphere temperature to increasing greenhouse gases is more likely linear, while the amplitude and period of ENSO fluctuates in a multidecadal time scale. The climate system model outputs suggest that the multidecadal modulation of ENSO is related to the delayed response of the subsurface temperature in the tropical Pacific compared to the response time of the sea surface temperature (SST), which would lead a modulation of the vertical temperature gradient. Furthermore, an eigenanalysis considering only two parameters, the changes in the zonal contrast of the mean background SST and the changes in the vertical contrast between the mean surface and subsurface temperatures in the tropical Pacific, exhibits a good agreement with the CGCM outputs in terms of the multidecadal modulations of the ENSO amplitude and period. In particular, the change in the vertical contrast, that is, change in difference between the subsurface temperature and SST, turns out to be more influential on the ENSO modulation than changes in the mean SST itself.


2018 ◽  
Vol 9 (1) ◽  
pp. 285-297 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño–Southern Oscillation, weakening its amplitude and low-frequency behaviour.


2017 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to an extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a Reduced Gravity Ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of an extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics opposes the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates a strong warming in the centre-east of the basin from April to August balanced by a cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño Southern Oscillation, weakening its amplitude and low-frequency behaviour.


2010 ◽  
Vol 23 (23) ◽  
pp. 6312-6335 ◽  
Author(s):  
Masahiro Watanabe ◽  
Tatsuo Suzuki ◽  
Ryouta O’ishi ◽  
Yoshiki Komuro ◽  
Shingo Watanabe ◽  
...  

Abstract A new version of the atmosphere–ocean general circulation model cooperatively produced by the Japanese research community, known as the Model for Interdisciplinary Research on Climate (MIROC), has recently been developed. A century-long control experiment was performed using the new version (MIROC5) with the standard resolution of the T85 atmosphere and 1° ocean models. The climatological mean state and variability are then compared with observations and those in a previous version (MIROC3.2) with two different resolutions (medres, hires), coarser and finer than the resolution of MIROC5. A few aspects of the mean fields in MIROC5 are similar to or slightly worse than MIROC3.2, but otherwise the climatological features are considerably better. In particular, improvements are found in precipitation, zonal mean atmospheric fields, equatorial ocean subsurface fields, and the simulation of El Niño–Southern Oscillation. The difference between MIROC5 and the previous model is larger than that between the two MIROC3.2 versions, indicating a greater effect of updating parameterization schemes on the model climate than increasing the model resolution. The mean cloud property obtained from the sophisticated prognostic schemes in MIROC5 shows good agreement with satellite measurements. MIROC5 reveals an equilibrium climate sensitivity of 2.6 K, which is lower than that in MIROC3.2 by 1 K. This is probably due to the negative feedback of low clouds to the increasing concentration of CO2, which is opposite to that in MIROC3.2.


2009 ◽  
Vol 22 (8) ◽  
pp. 2023-2038 ◽  
Author(s):  
Yan Du ◽  
Shang-Ping Xie ◽  
Gang Huang ◽  
Kaiming Hu

Abstract El Niño induces a basin-wide increase in tropical Indian Ocean (TIO) sea surface temperature (SST) with a lag of one season. The north IO (NIO), in particular, displays a peculiar double-peak warming with the second peak larger in magnitude and persisting well through the summer. Motivated by recent studies suggesting the importance of the TIO warming for the Northwest Pacific and East Asian summer monsoons, the present study investigates the mechanisms for the second peak of the NIO warming using observations and general circulation models. This analysis reveals that internal air–sea interaction within the TIO is key to sustaining the TIO warming through summer. During El Niño, anticyclonic wind curl anomalies force a downwelling Rossby wave in the south TIO through Walker circulation adjustments, causing a sustained SST warming in the tropical southwest IO (SWIO) where the mean thermocline is shallow. During the spring and early summer following El Niño, this SWIO warming sustains an antisymmetric pattern of atmospheric anomalies with northeasterly (northwesterly) wind anomalies north (south) of the equator. Over the NIO as the mean winds turn into southwesterly in May, the northeasterly anomalies force the second SST peak that persists through summer by reducing the wind speed and surface evaporation. Atmospheric general circulation model experiments show that the antisymmetric atmospheric pattern is a response to the TIO warming, suggestive of their mutual interaction. Thus, ocean dynamics and Rossby waves in particular are important for the warming not only locally in SWIO but also on the basin-scale north of the equator, a result with important implications for climate predictability and prediction.


2009 ◽  
Vol 22 (3) ◽  
pp. 550-567 ◽  
Author(s):  
Malte F. Jansen ◽  
Dietmar Dommenget ◽  
Noel Keenlyside

Abstract Statistical analysis of observations (including atmospheric reanalysis and forced ocean model simulations) is used to address two questions: First, does an analogous mechanism to that of El Niño–Southern Oscillation (ENSO) exist in the equatorial Atlantic or Indian Ocean? Second, does the intrinsic variability in these basins matter for ENSO predictability? These questions are addressed by assessing the existence and strength of the Bjerknes and delayed negative feedbacks in each tropical basin, and by fitting conceptual recharge oscillator models, both with and without interactions among the basins. In the equatorial Atlantic the Bjerknes and delayed negative feedbacks exist, although weaker than in the Pacific. Equatorial Atlantic variability is well described by the recharge oscillator model, with an oscillatory mixed ocean dynamics–sea surface temperature (SST) mode present in boreal spring and summer. The dynamics of the tropical Indian Ocean, however, appear to be quite different: no recharge–discharge mechanism is found. Although a positive Bjerknes-like feedback from July to September is found, the role of heat content seems secondary. Results also show that Indian Ocean interaction with ENSO tends to damp the ENSO oscillation and is responsible for a frequency shift to shorter periods. However, the retrospective forecast skill of the conceptual model is hardly improved by explicitly including Indian Ocean SST. The interaction between ENSO and the equatorial Atlantic variability is weaker. However, a feedback from the Atlantic on ENSO appears to exist, which slightly improves the retrospective forecast skill of the conceptual model.


2008 ◽  
Vol 21 (22) ◽  
pp. 5852-5869 ◽  
Author(s):  
Vasubandhu Misra ◽  
L. Marx ◽  
M. Brunke ◽  
X. Zeng

Abstract A set of multidecadal coupled ocean–atmosphere model integrations are conducted with different time steps for coupling between the atmosphere and the ocean. It is shown that the mean state of the equatorial Pacific does not change in a statistically significant manner when the coupling interval between the atmospheric general circulation model (AGCM) and the ocean general circulation model (OGCM) is changed from 1 day to 2 or even 3 days. It is argued that because the coarse resolution of the AGCM precludes resolving realistic “weather” events, changing the coupling interval from 1 day to 2 or 3 days has very little impact on the mean coupled climate. On the other hand, reducing the coupling interval to 3 h had a much stronger impact on the mean state of the equatorial Pacific and the concomitant general circulation. A novel experiment that incorporates a (pseudo) interaction of the atmosphere with SST at every time step of the AGCM was also conducted. In this unique coupled model experiment, the AGCM at every time step mutually interacts with the skin SST. This skin SST is anchored to the bulk SST, which is updated from the OGCM once a day. Both of these experiments reduced the cold tongue bias moderately over the equatorial Pacific Ocean with a corresponding reduction in the easterly wind stress bias relative to the control integration. It is stressed from the results of these model experiments that the impact of high-frequency air–sea coupling is significant on the cold tongue bias. The interannual variation of the equatorial Pacific was less sensitive to the coupling time step between the AGCM and the OGCM. Increasing (reducing) the coupling interval of the air–sea interaction had the effect of weakening (marginally strengthening) the interannual variations of the equatorial Pacific Ocean. It is argued that the low-frequency response of the upper ocean, including the cold tongue bias, is modulated by the atmospheric stochastic forcing on the coupled ocean–atmosphere system. This effect of the atmospheric stochastic forcing is affected by the frequency of the air–sea coupling and is found to be stronger than the rectification effect of the diurnal variations of the air–sea interaction on the low frequency. This may be a result of a limitation in the coupled model used in this study in which the OGCM has an inadequate vertical resolution in the mixed layer to sustain diurnal variations in the upper ocean.


2006 ◽  
Vol 19 (16) ◽  
pp. 3952-3972 ◽  
Author(s):  
J. H. Jungclaus ◽  
N. Keenlyside ◽  
M. Botzet ◽  
H. Haak ◽  
J.-J. Luo ◽  
...  

Abstract This paper describes the mean ocean circulation and the tropical variability simulated by the Max Planck Institute for Meteorology (MPI-M) coupled atmosphere–ocean general circulation model (AOGCM). Results are presented from a version of the coupled model that served as a prototype for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) simulations. The model does not require flux adjustment to maintain a stable climate. A control simulation with present-day greenhouse gases is analyzed, and the simulation of key oceanic features, such as sea surface temperatures (SSTs), large-scale circulation, meridional heat and freshwater transports, and sea ice are compared with observations. A parameterization that accounts for the effect of ocean currents on surface wind stress is implemented in the model. The largest impact of this parameterization is in the tropical Pacific, where the mean state is significantly improved: the strength of the trade winds and the associated equatorial upwelling weaken, and there is a reduction of the model’s equatorial cold SST bias by more than 1 K. Equatorial SST variability also becomes more realistic. The strength of the variability is reduced by about 30% in the eastern equatorial Pacific and the extension of SST variability into the warm pool is significantly reduced. The dominant El Niño–Southern Oscillation (ENSO) period shifts from 3 to 4 yr. Without the parameterization an unrealistically strong westward propagation of SST anomalies is simulated. The reasons for the changes in variability are linked to changes in both the mean state and to a reduction in atmospheric sensitivity to SST changes and oceanic sensitivity to wind anomalies.


Sign in / Sign up

Export Citation Format

Share Document