scholarly journals An Examination of Tropical Cyclone Position, Intensity, and Intensity Life Cycle within Atmospheric Reanalysis Datasets

2012 ◽  
Vol 25 (10) ◽  
pp. 3453-3475 ◽  
Author(s):  
Benjamin A. Schenkel ◽  
Robert E. Hart

Abstract The following study examines the position and intensity differences of tropical cyclones (TCs) among the Best-Track and five atmospheric reanalysis datasets to evaluate the degree to which reanalyses are appropriate for studying TCs. While significant differences are found in both reanalysis TC intensity and position, the representation of TC intensity within reanalyses is found to be most problematic owing to its underestimation beyond what can be attributed solely to the coarse grid resolution. Moreover, the mean life cycle of normalized TC intensity within reanalyses reveals an underestimation of both prepeak intensification rates as well as a delay in peak intensity relative to the Best-Track. These discrepancies between Best-Track and reanalysis TC intensity and position can further be described through correlations with such parameters as Best-Track TC age, Best-Track TC intensity, Best-Track TC location, and the extended Best-Track TC size. Specifically, TC position differences within the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), ECMWF Interim Re-Analysis (ERA-I), and Modern Era Retrospective-Analysis for Research and Applications (MERRA) exhibit statistically significant correlations (0.27 ≤ R ≤ 0.38) with the proximity of TCs to observation dense areas in the North Atlantic (NATL) and western North Pacific (WPAC). Reanalysis TC intensity is found to be most strongly correlated with Best-Track TC size (0.53 ≤ R ≤ 0.70 for maximum 10-m wind speed; −0.71 ≤ R ≤ −0.53 for minimum mean sea level pressure) while exhibiting smaller, yet significant, correlations with Best-Track TC age, Best-Track TC intensity, and Best-Track TC latitude. Of the three basins examined, the eastern North Pacific (EPAC) has the largest reanalysis TC position differences and weakest intensities possibly due to a relative dearth of observations, the strong nearby terrain gradient, and the movement of TCs away from the most observation dense portion of the basin over time. The smaller mean Best-Track size and shorter mean lifespan of Best-Track EPAC TCs may also yield weaker reanalysis TC intensities. Of the five reanalyses, the smaller position differences and stronger intensities found in the Climate Forecast System Reanalysis (CFSR) and Japanese 25-year Reanalysis (JRA-25) are attributed to the use of vortex relocation and TC wind profile retrievals, respectively. The discrepancies in TC position between the Best-Track and reanalyses combined with the muted magnitude of TC intensity and its partially nonphysical life cycle within reanalyses suggests that caution should be exercised when utilizing these datasets for studies that rely either on TC intensity (raw or normalized) or track. Finally, several cases of nonphysical TC structure also argue that further work is needed to improve TC representation while implying that studies focusing solely on TC intensity and track do not necessarily extend to other aspects of TC representation.

2007 ◽  
Vol 20 (4) ◽  
pp. 633-649 ◽  
Author(s):  
M. Croci-Maspoli ◽  
C. Schwierz ◽  
H. C. Davies

Abstract A dynamically based climatology is derived for Northern Hemisphere atmospheric blocking events. Blocks are viewed as large amplitude, long-lasting, and negative potential vorticity (PV) anomalies located beneath the dynamical tropopause. The derived climatology [based on the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40)] provides a concise, coherent, and illuminating description of the main physical characteristics of blocks and the accompanying linear trends. The latitude–longitude distribution of blocking frequency captures the standard bimodal geographical distribution with major peaks over the North Atlantic and eastern North Pacific in all four seasons. The accompanying pattern for the age distribution, the genesis–lysis regions, and the track of blocks reveals that 1) younger blocks (1–4 days) are more prevalent at lower latitudes whereas significantly older blocks (up to 12 days) are located at higher latitudes; 2) genesis is confined predominantly to the two major ocean basins and in a zonal band between 40° and 50°N latitude, whereas lysis is more dispersed but with clear preference to higher latitudes; and 3) the general northeastward–west-northwest movement of blocks in the genesis–lysis phase also exhibits subtle seasonal and intra- and interbasin differences. Examination of the intensity and spatial-scale changes during the blocking life cycle suggests that in the mean a block’s evolution is independent of the genesis region and its eventual duration. A novel analysis of blocking trends reveals significant negative trends in winter over Greenland and in spring over the North Pacific. It is shown that the changes over Greenland are linked to the number of blocking episodes, whereas a neighboring trend signal to the south is linked to higher-frequency anticyclonic systems. Furthermore, evidence is adduced that changes in blocking frequency contribute seminally to tropopause height trends.


2019 ◽  
Vol 58 (2) ◽  
pp. 291-315 ◽  
Author(s):  
Pedro Odon ◽  
Gregory West ◽  
Roland Stull

AbstractThis study evaluates how well reanalyses represent daily and multiday accumulated precipitation (hereinafter daily PCP) over British Columbia, Canada (Part I evaluated 2-m temperature). Reanalyses are compared with observations from 66 meteorological stations distributed over the complex terrain of British Columbia, separated into climate regions by k-means clustering. Systematic error, two-sample χ2 statistic, and frequency of daily PCP occurrence are evaluated from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim), the Climate Forecast System Reanalysis (CFSR), the Japanese 55-year Reanalysis (JRA-55), and the latest Modern-Era Retrospective Analysis for Research and Applications (version 2; MERRA-2). The 2- and 30-yr return levels of daily PCP are estimated from a generalized extreme value (GEV) distribution fitted by the method of L moments, and their systematic errors are analyzed. JRA-55 and MERRA-2 generally outperform ERA-Interim and CFSR across all metrics. Biases are largely explained by poor reanalysis representation of terrain characteristics such as steepness, exposure, elevation, location of barriers, and wind speed and direction. Statistical stationarity of precipitation intensity and frequency over the 30-yr period is assessed by using confidence intervals and GEV distributions fitted with and without time-dependent parameters. It is determined that stationary distributions are sufficient to represent the climate of daily PCP for this region and time period.


2005 ◽  
Vol 5 (3) ◽  
pp. 4223-4256
Author(s):  
G. Nikulin ◽  
A. Karpechko

Abstract. The development of wintertime ozone buildup over the Northern Hemisphere (NH) midlatitudes and its connection with the mean meridional circulation in the stratosphere are examined statistically on a monthly basis from October to March (1980–2002). The ozone buildup begins locally in October with positive ozone tendencies over the North Pacific, which spread eastward and westward in November and finally cover all midlatitudes in December. During October–January a longitudinal distribution of the ozone tendencies mirrors a structure of quasi-stationary planetary waves in the lower stratosphere and has less similarity with this structure in February–March when chemistry begins to play a more important role. From November to March, zonal mean ozone tendencies (50°–60° N) show strong correlation (|r|=0.7) with different parameters used as proxies of the mean meridional circulation, namely: eddy heat flux, the vertical residual velocity (diabatically-derived) and temperature tendency. The correlation patterns between ozone tendency and the vertical residual velocity or temperature tendency are more homogeneous from month to month than ones for eddy heat flux. A partial exception is December when correlation is strong only for the vertical residual velocity. In October zonal mean ozone tendencies have no coupling with the proxies. However, positive tendencies averaged over the North Pacific correlate well, with all of them suggesting that intensification of northward ozone transport starts locally over the Pacific already in October. We show that the NH midlatitude ozone buildup has stable statistical relation with the mean meridional circulation in all months from October to March and half of the interannual variability in monthly ozone tendencies can be explained by applying different proxies of the mean meridional circulation.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1634
Author(s):  
Tommaso Caloiero ◽  
Francesco Aristodemo

In this paper, trend detection of wave parameters such as significant wave height, energy period, and wave power along the Italian seas was carried out. To this purpose, wave time series in the period 1979–2018 taken from the global atmospheric reanalysis ERA-Interim by European Center for Medium-Range Weather Forecasts (ECMWF) were considered. Choosing a significance level equal to 90%, the use of the Mann–Kendall test allowed estimating ongoing trends on the mean values evaluated at yearly and seasonal scale. Furthermore, the assessment of the magnitude of the increase/decrease of the wave parameters was performed through the Theil–Sen estimator. The obtained results underlined that the mean values of the considered wave parameters were characterized by a high occurrence of positive trends in the different Italian seas. The findings of this study could have implications for studies of coastal flooding, shoreline variations, and port operations, and for the assessment of the performances of Wave Energy Converters.


2014 ◽  
Vol 71 (10) ◽  
pp. 3668-3673 ◽  
Author(s):  
Erica Madonna ◽  
Sebastian Limbach ◽  
Christine Aebi ◽  
Hanna Joos ◽  
Heini Wernli ◽  
...  

Abstract The co-occurrence of warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones, and stratospheric potential vorticity (PV) streamers, indicators for breaking Rossby waves on the tropopause, is investigated for a 21-yr period in the Northern Hemisphere using Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data. WCB outflows and PV streamers are respectively identified as two- and three-dimensional objects and tracked during their life cycle. PV streamers are more frequent than WCB outflows and nearly 15% of all PV streamers co-occur with WCBs during their life cycle, whereas about 60% of all WCB outflows co-occur with PV streamers. Co-occurrences are most frequent over the North Atlantic and North Pacific in spring and winter. WCB outflows are often located upstream of the PV streamers and form earlier, indicating the importance of diabatic processes for downstream Rossby wave breaking. Less frequently, PV streamers occur first, leading to the formation of new WCBs.


2010 ◽  
Vol 23 (4) ◽  
pp. 851-867 ◽  
Author(s):  
Nathaniel C. Johnson ◽  
Steven B. Feldstein

Abstract This study combines k-means cluster analysis with linear unidimensional scaling to illustrate the spatial and temporal variability of the wintertime North Pacific sea level pressure (SLP) field. Daily wintertime SLP data derived from the NCEP–NCAR reanalysis are used to produce 16 SLP anomaly patterns that represent a discretized approximation of the continuum of North Pacific SLP patterns. This study adopts the continuum perspective for teleconnection patterns, which provides a much simpler framework for understanding North Pacific variability than the more commonly used discrete modal approach. The primary focus of this research is to show that variability in the North Pacific—on intraseasonal, interannual, and interdecadal time scales—can be understood in terms of changes in the frequency distribution of the cluster patterns that compose the continuum, each of which has a time scale of about 10 days. This analysis reveals 5–6 Pacific–North American–like (PNA-like) patterns for each phase, as well as dipoles and wave trains. A self-organizing map (SOM) analysis of coupled SLP and outgoing longwave radiation data shows that many of these patterns are associated with convection in the tropical Indo-Pacific region. On intraseasonal time scales, the frequency distribution of these patterns, in particular the PNA-like patterns, is strongly influenced by the Madden–Julian oscillation (MJO). On interannual time scales, the El Niño–Southern Oscillation (ENSO) impacts the North Pacific continuum, with warm ENSO episodes resulting in the increased frequency of easterly displaced Aleutian low pressure anomaly patterns and cold ENSO episodes resulting in the increased frequency of southerly displaced Aleutian high pressure anomaly patterns. In addition, the results of this analysis suggest that the interdecadal variability of the North Pacific SLP field, including the well-known “regime shift” of 1976/77, also results from changes in the frequency distribution within the continuum of SLP patterns.


Sign in / Sign up

Export Citation Format

Share Document