scholarly journals 100 Years of Progress in Polar Meteorology

2018 ◽  
Vol 59 ◽  
pp. 21.1-21.36 ◽  
Author(s):  
John E. Walsh ◽  
David H. Bromwich ◽  
James. E. Overland ◽  
Mark C. Serreze ◽  
Kevin R. Wood

AbstractThe polar regions present several unique challenges to meteorology, including remoteness and a harsh environment. We summarize the evolution of polar meteorology in both hemispheres, beginning with measurements made during early expeditions and concluding with the recent decades in which polar meteorology has been central to global challenges such as the ozone hole, weather prediction, and climate change. Whereas the 1800s and early 1900s provided data from expeditions and only a few subarctic stations, the past 100 years have seen great advances in the observational network and corresponding understanding of the meteorology of the polar regions. For example, a persistent view in the early twentieth century was of an Arctic Ocean dominated by a permanent high pressure cell, a glacial anticyclone. With increased observations, by the 1950s it became apparent that, while anticyclones are a common feature of the Arctic circulation, cyclones are frequent and may be found anywhere in the Arctic. Technology has benefited polar meteorology through advances in instrumentation, especially autonomously operated instruments. Moreover, satellite remote sensing and computer models revolutionized polar meteorology. We highlight the four International Polar Years and several high-latitude field programs of recent decades. We also note outstanding challenges, which include understanding of the role of the Arctic in variations of midlatitude weather and climate, the ability to model surface energy exchanges over a changing Arctic Ocean, assessments of ongoing and future trends in extreme events in polar regions, and the role of internal variability in multiyear-to-decadal variations of polar climate.

2018 ◽  
Vol 11 (8) ◽  
pp. 3347-3368 ◽  
Author(s):  
Yurii Batrak ◽  
Ekaterina Kourzeneva ◽  
Mariken Homleid

Abstract. Sea ice is an important factor affecting weather regimes, especially in polar regions. A lack of its representation in numerical weather prediction (NWP) systems leads to large errors. For example, in the HARMONIE–AROME model configuration of the ALADIN–HIRLAM NWP system, the mean absolute error in 2 m temperature reaches 1.5 ∘C after 15 forecast hours for Svalbard. A possible reason for this is that the sea ice properties are not reproduced correctly (there is no prognostic sea ice temperature in the model). Here, we develop a new simple sea ice scheme (SICE) and implement it in the ALADIN–HIRLAM NWP system in order to improve the forecast quality in areas influenced by sea ice. The new parameterization is evaluated using HARMONIE–AROME experiments covering the Svalbard and Gulf of Bothnia areas for a selected period in March–April 2013. It is found that using the SICE scheme improves the forecast, decreasing the value of the 2 m temperature mean absolute error on average by 0.5 ∘C in areas that are influenced by sea ice. The new scheme is sensitive to the representation of the form drag. The 10 m wind speed bias increases on average by 0.4 m s−1 when the form drag is not taken into account. Also, the performance of SICE in March–April 2013 and December 2015–December 2016 was studied by comparing modelling results with the sea ice surface temperature products from MODIS and VIIRS. The warm bias (of approximately 5 ∘C) of the new scheme is indicated for areas of thick ice in the Arctic. Impacts of the SICE scheme on the modelling results and possibilities for future improvement of sea ice representation in the ALADIN–HIRLAM NWP system are discussed.


2012 ◽  
Vol 47 (2) ◽  
pp. 923-931 ◽  
Author(s):  
James M. Armitage ◽  
Sung-Deuk Choi ◽  
Torsten Meyer ◽  
Trevor N. Brown ◽  
Frank Wania

2000 ◽  
Vol 12 (3) ◽  
pp. 257-257 ◽  
Author(s):  
Andrew Clarke

Theodosius Dobzhansky once remarked that nothing in biology makes sense other than in the light of evolution, thereby emphasising the central role of evolutionary studies in providing the theoretical context for all of biology. It is perhaps surprising then that evolutionary biology has played such a small role to date in Antarctic science. This is particularly so when it is recognised that the polar regions provide us with an unrivalled laboratory within which to undertake evolutionary studies. The Antarctic exhibits one of the classic examples of a resistance adaptation (antifreeze peptides and glycopeptides, first described from Antarctic fish), and provides textbook examples of adaptive radiations (for example amphipod crustaceans and notothenioid fish). The land is still largely in the grip of major glaciation, and the once rich terrestrial floras and faunas of Cenozoic Gondwana are now highly depauperate and confined to relatively small patches of habitat, often extremely isolated from other such patches. Unlike the Arctic, where organisms are returning to newly deglaciated land from refugia on the continental landmasses to the south, recolonization of Antarctica has had to take place by the dispersal of propagules over vast distances. Antarctica thus offers an insight into the evolutionary responses of terrestrial floras and faunas to extreme climatic change unrivalled in the world. The sea forms a strong contrast to the land in that here the impact of climate appears to have been less severe, at least in as much as few elements of the fauna show convincing signs of having been completely eradicated.


2021 ◽  
Author(s):  
Ilka Peeken ◽  
Elisa Bergami ◽  
Ilaria Corsi ◽  
Benedikt Hufnagl ◽  
Christian Katlein ◽  
...  

<p>Marine plastic pollution is a growing worldwide environmental concern as recent reports indicate that increasing quantities of litter disperse into secluded environments, including Polar Regions. Plastic degrades into smaller fragments under the influence of sunlight, temperature changes, mechanic abrasion and wave action resulting in small particles < 5mm called microplastics (MP). Sea ice cores, collected in the Arctic Ocean have so far revealed extremely high concentrations of very small microplastic particles, which might be transferred in the ecosystem with so far unknown consequences for the ice dependant marine food chain.  Sea ice has long been recognised as a transport vehicle for any contaminates entering the Arctic Ocean from various long range and local sources. The Fram Strait is hereby both, a major inflow gateway of warm Atlantic water, with any anthropogenic imprints and the major outflow region of sea ice originating from the Siberian shelves and carried via the Transpolar Drift. The studied sea ice revealed a unique footprint of microplastic pollution, which were related to different water masses and indicating different source regions. Climate change in the Arctic include loss of sea ice, therefore, large fractions of the embedded plastic particles might be released and have an impact on living systems. By combining modeling of sea ice origin and growth, MP particle trajectories in the water column as well as MPs long-range transport via particle tracking and transport models we get first insights  about the sources and pathways of MP in the Arctic Ocean and beyond and how this might affect the Arctic ecosystem.</p>


2019 ◽  
Vol 177 ◽  
pp. 201-212 ◽  
Author(s):  
Igor Niezgodzki ◽  
Jarosław Tyszka ◽  
Gregor Knorr ◽  
Gerrit Lohmann

2019 ◽  
Vol 53 (22) ◽  
pp. 13136-13145 ◽  
Author(s):  
Luis M. Laglera ◽  
Camila Sukekava ◽  
Hans A. Slagter ◽  
Javier Downes ◽  
Alberto Aparicio-Gonzalez ◽  
...  

2013 ◽  
Vol 67 ◽  
pp. 8-13 ◽  
Author(s):  
Xin He ◽  
Liguang Sun ◽  
Zhouqing Xie ◽  
Wen Huang ◽  
Nanye Long ◽  
...  

Polar Record ◽  
2008 ◽  
Vol 44 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Øystein Jensen

ABSTRACTWith the International Polar Year (IPY) having commenced in March 2007, key issues relating to the polar regions are again in focus. This article reviews one central legal issue re-emerging in the Arctic: global regulation of safety standards for international shipping. The ‘Guidelines for ships operating in Arctic ice-covered waters’ are examined, with a view to the probable expansion of shipping in the Arctic in near future. Following an introduction to navigational issues within the Arctic context, the article describes how the guidelines came into being, and then analyses key elements and structure of the regulations and shortfalls of today's arrangements. The possible relevance of the guidelines to the Antarctic is also discussed briefly. Finally, the article inquires into the key repercussions of introducing binding regulations.


2020 ◽  
Author(s):  
Annalisa Cherchi ◽  
Paolo Oliveri ◽  
Aarnout van Delden

<p>The Arctic Oscillation (AO) is one of the main modes of variability of the Northern Hemisphere winter, also referred as Northern Annular Mode (NAM). The positive phase of the AO is characterized by warming/cooling over Northern Eurasia and the United States and cooling over Canada, especially over eastern Canada. Its positive phase is also characterized by very dry conditions over the Mediterranean and wet conditions over Northern Europe. A positive trend of the AO is observed for the period 1951-2011 and it is captured in CMIP5 models only when GHG-only forcing are included. In CMIP5 models the change expected is mostly mitigated by the effects of the aerosols. When considering AR5 scenarios, the AO is projected to become more positive in the future, though with a large spread among the models.</p><p>Overall the spread in the representation of the AO variability and trend is large also in experiments with present-day conditions, likely associated with the large internal variability. Unique tools to identify and measure the role of the internal variability in the model representation of the large-scale modes of variability are large ensembles where multiple members are built with different initial conditions.</p><p>Here we use the NCAR Community Model Large Ensemble (CESM-LE) composing the historical period (1920-2005) to the future (2006-2100) in a RCP8.5 scenario to measure the role of the internal variability in shaping AO variability and changes. Potential predictability of the AO index is quantified in the historical and future periods, evidencing how the members spread remain large without specific trends in these characteristics. Preliminary results indicate that the internal variability has large influence on the AO changes and related implications for the Northern Hemisphere climate.</p>


Sign in / Sign up

Export Citation Format

Share Document