scholarly journals Progress toward High-Resolution, Real-Time Radiosonde Reports

2016 ◽  
Vol 97 (11) ◽  
pp. 2149-2161 ◽  
Author(s):  
Bruce Ingleby ◽  
Patricia Pauley ◽  
Alexander Kats ◽  
Jeff Ator ◽  
Dennis Keyser ◽  
...  

Abstract Some real-time radiosonde reports are now available with higher vertical resolution and higher precision than the alphanumeric TEMP code. There are also extra metadata; for example, the software version may indicate whether humidity corrections have been applied at the station. Numerical weather prediction (NWP) centers and other users need to start using the new Binary Universal Form for Representation of Meteorological Data (BUFR) reports because the alphanumeric codes are being withdrawn. TEMP code has various restrictions and complexities introduced when telecommunication speed and costs were overriding concerns; one consequence is minor temperature rounding errors. In some ways BUFR reports are simpler: the whole ascent should be contained in a single report. BUFR reports can also include the time and location of each level; an ascent takes about 2 h and the balloon can drift 100 km or more laterally. This modernization is the largest and most complex change to the worldwide reporting of radiosonde observations for many years; international implementation is taking longer than planned and is very uneven. The change brings both opportunities and challenges. The biggest challenge is that the number and quality of the data from radiosonde ascents may suffer if the assessment of the BUFR reports and two-way communication between data producers and data users are not given the priority they require. It is possible that some countries will only attempt to replicate the old reports in the new format, not taking advantage of the benefits, which include easier treatment of radiosonde drift and a better understanding of instrument and processing details, as well as higher resolution.

2006 ◽  
Vol 3 (3) ◽  
pp. 319-342 ◽  
Author(s):  
R. Brožková ◽  
M. Derková ◽  
M. Belluš ◽  
F. Farda

Abstract. ALADIN/MFSTEP is a configuration of the numerical weather prediction (NWP) model ALADIN run in a dedicated real-time mode for the purposes of the MFSTEP Project. A special attention was paid to the quality of atmospheric fluxes used for the forcing of fine-scale oceanographic models. This paper describes the novelties applied in ALADIN/MFSTEP initiated by the MFSTEP demands, leading also to improvements in general weather forecasting.


Ocean Science ◽  
2006 ◽  
Vol 2 (2) ◽  
pp. 113-121 ◽  
Author(s):  
R. Brožková ◽  
M. Derková ◽  
M. Belluš ◽  
A. Farda

Abstract. ALADIN/MFSTEP is a configuration of the numerical weather prediction (NWP) model ALADIN run in a dedicated real-time mode for the purposes of the MFSTEP Project. A special attention was paid to the quality of atmospheric fluxes used for the forcing of fine-scale oceanographic models. This paper describes the novelties applied in ALADIN/MFSTEP initiated by the MFSTEP demands, leading also to improvements in general weather forecasting.


2021 ◽  
Vol 94 (2) ◽  
pp. 237-249
Author(s):  
Martin Novák

The article includes a summary of basic information about the Universal Thermal Climate Index (UTCI) calculation by the numerical weather prediction (NWP) model ALADIN of the Czech Hydrometeorological Institute (CHMI). Examples of operational outputs for weather forecasters in the CHMI are shown in the first part of this work. The second part includes results of a comparison of computed UTCI values by ALADIN for selected place with UTCI values computed from real measured meteorological data from the same place.


2003 ◽  
Vol 41 (2) ◽  
pp. 379-389 ◽  
Author(s):  
M.D. Goldberg ◽  
Yanni Qu ◽  
L.M. McMillin ◽  
W. Wolf ◽  
Lihang Zhou ◽  
...  

2021 ◽  
Author(s):  
Ruth Mottram ◽  
Oskar Landgren ◽  
Rasmus Anker Pedersen ◽  
Kristian Pagh Nielsen ◽  
Ole Bøssing Christensen ◽  
...  

<p>The development of the HARMONIE model system has led to huge advances in numerical weather prediction, including over Greenland where a numerical weather prediction (NWP) model is used to forecast daily surface mass budget over the Greenland ice sheet as presented on polarportal.dk. The new high resolution Copernicus Arctic Reanalysis further developed the possibilities in HARMONIE with full 3DVar data assimilation and extended use of quality-controlled local observations. Here, we discuss the development and current status of the climate version of the HARMONIE Climate model (HCLIM). The HCLIM system has opened up the possibility for flexible use of the model at a range of spatial scales using different physical schemes including HARMONIE-AROME, ALADIN and ALARO for different spatial and temporal resolutions and assimilating observations, including satellite data on sea ice concentration from ESA CCI+, to improve hindcasts. However, the range of possibilities means that documenting the effects of different physics and parameterisation schemes is important before widespread application. </p><p>Here, we focus on HCLIM performance over the Greenland ice sheet, using observations to verify the different plausible set-ups and investigate biases in climate model outputs that affect the surface mass budget (SMB) of the Greenland ice sheet. </p><p>The recently funded Horizon 2020 project PolarRES will use the HCLIM model for very high resolution regional downscaling, together with other regional climate models in both Arctic and Antarctic regions, and our analysis thus helps to optimise the use of HCLIM in the polar regions for different modelling purposes.</p>


2021 ◽  
Author(s):  
Andreas Beckert ◽  
Lea Eisenstein ◽  
Tim Hewson ◽  
George C. Craig ◽  
Marc Rautenhaus

<p><span>Atmospheric fronts, a widely used conceptual model in meteorology, describe sharp boundaries between two air masses of different thermal properties. In the mid-latitudes, these sharp boundaries are commonly associated with extratropical cyclones. The passage of a frontal system is accompanied by significant weather changes, and therefore fronts are of particular interest in weather forecasting. Over the past decades, several two-dimensional, horizontal feature detection methods to objectively identify atmospheric fronts in numerical weather prediction (NWP) data were proposed in the literature (e.g. Hewson, Met.Apps. 1998). In addition, recent research (Kern et al., IEEE Trans. Visual. Comput. Graphics, 2019) has shown the feasibility of detecting atmospheric fronts as three-dimensional surfaces representing the full 3D frontal structure. In our work, we build on the studies by Hewson (1998) and Kern et al. (2019) to make front detection usable for forecasting purposes in an interactive 3D visualization environment. We consider the following aspects: (a) As NWP models evolved in recent years to resolve atmospheric processes on scales far smaller than the scale of midlatitude-cyclone- fronts, we evaluate whether previously developed detection methods are still capable to detect fronts in current high-resolution NWP data. (b) We present integration of our implementation into the open-source “Met.3D” software (http://met3d.wavestoweather.de) and analyze two- and three-dimensional frontal structures in selected cases of European winter storms, comparing different models and model resolution. (c) The considered front detection methods rely on threshold parameters, which mostly refer to the magnitude of the thermal gradient within the adjacent frontal zone - the frontal strength. If the frontal strength exceeds the threshold, a so-called feature candidate is classified as a front, while others are discarded. If a single, fixed, threshold is used, unwanted “holes” can be observed in the detected fronts. Hence, we use transparency mapping with fuzzy thresholds to generate continuous frontal features. We pay particular attention to the adjustment of filter thresholds and evaluate the dependence of thresholds and resolution of the underlying data.</span></p>


Sign in / Sign up

Export Citation Format

Share Document