Evaluation of Variation in Surface Solar Irradiance and Clustering of Observation Stations in Japan

2016 ◽  
Vol 55 (10) ◽  
pp. 2165-2180 ◽  
Author(s):  
Takeshi Watanabe ◽  
Takahiro Takamatsu ◽  
Takashi Y. Nakajima

AbstractVariation in surface solar irradiance is investigated using ground-based observation data. The solar irradiance analyzed in this paper is scaled by the solar irradiance at the top of the atmosphere and is thus dimensionless. Three metrics are used to evaluate the variation in solar irradiance: the mean, standard deviation, and sample entropy. Sample entropy is a value representing the complexity of time series data, but it is not often used for investigation of solar irradiance. In analyses of solar irradiance, sample entropy represents the manner of its fluctuation; large sample entropy corresponds to rapid fluctuation and a high ramp rate, and small sample entropy suggests weak or slow fluctuations. The three metrics are used to cluster 47 ground-based observation stations in Japan into groups with similar features of variation in surface solar irradiance. This new approach clarifies regional features of variation in solar irradiance. The results of this study can be applied to renewable-energy engineering.

2018 ◽  
Vol 7 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Adekunlé Akim Salami ◽  
Ayité Sénah Akoda Ajavon ◽  
Mawugno Koffi Kodjo ◽  
Seydou Ouedraogo ◽  
Koffi-Sa Bédja

In this article, we introduced a new approach based on graphical method (GPM), maximum likelihood method (MLM), energy pattern factor method (EPFM), empirical method of Justus (EMJ), empirical method of Lysen (EML) and moment method (MOM) using the even or odd classes of wind speed series distribution histogram with 1 m/s as bin size to estimate the Weibull parameters. This new approach is compared on the basis of the resulting mean wind speed and its standard deviation using seven reliable statistical indicators (RPE, RMSE, MAPE, MABE, R2, RRMSE and IA). The results indicate that this new approach is adequate to estimate Weibull parameters and can outperform GPM, MLM, EPF, EMJ, EML and MOM which uses all wind speed time series data collected for one period. The study has also found a linear relationship between the Weibull parameters K and C estimated by MLM, EPFM, EMJ, EML and MOM using odd or even class wind speed time series and those obtained by applying these methods to all class (both even and odd bins) wind speed time series. Another interesting feature of this approach is the data size reduction which eventually leads to a reduced processing time.Article History: Received February 16th 2018; Received in revised form May 5th 2018; Accepted May 27th 2018; Available onlineHow to Cite This Article: Salami, A.A., Ajavon, A.S.A., Kodjo, M.K. , Ouedraogo, S. and Bédja, K. (2018) The Use of Odd and Even Class Wind Speed Time Series of Distribution Histogram to Estimate Weibull Parameters. Int. Journal of Renewable Energy Development 7(2), 139-150.https://doi.org/10.14710/ijred.7.2.139-150


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 245
Author(s):  
Ildoo Kim

Multiscale sample entropy analysis has been developed to quantify the complexity and the predictability of a time series, originally developed for physiological time series. In this study, the analysis was applied to the turbulence data. We measured time series data for the velocity fluctuation, in either the longitudinal or transverse direction, of turbulent soap film flows at various locations. The research was to assess the feasibility of using the entropy analysis to qualitatively characterize turbulence, without using any conventional energetic analysis of turbulence. The study showed that the application of the entropy analysis to the turbulence data is promising. From the analysis, we successfully captured two important features of the turbulent soap films. It is indicated that the turbulence is anisotropic from the directional disparity. In addition, we observed that the most unpredictable time scale increases with the downstream distance, which is an indication of the decaying turbulence.


2021 ◽  
Vol 24 ◽  
pp. 100618
Author(s):  
Philipe Riskalla Leal ◽  
Ricardo José de Paula Souza e Guimarães ◽  
Fábio Dall Cortivo ◽  
Rayana Santos Araújo Palharini ◽  
Milton Kampel

2021 ◽  
Vol 3 (2) ◽  
pp. 69
Author(s):  
Rohim Rohim ◽  
Mike Triani

The purpose of this research is to determine (1) the effect of income on gas consumption in Indonesia (2) the effect of population on gas consumption in Indonesia (3) the effect of industrial growth on gas consumption in Indonesia. This type of research is descriptive and associative. The data used in this research is secondary data from Indonesia in the form of time series data from 1970 to 2019 and this data was obtained from official institutions of the World Bank and BP Statistic World. The data were processed using multiple linear regression. The results showed that the income had a negative and significant effect on gas consumption with a probability value of 0.0005 <0.05, the population had a positive and significant effect on gas consumption with a value of prob t-count of 0.0010 <0.05 and industrial growth had a positive and significant effect on gas consumption.  The significant to gas consumption in Indonesia with a value of prob t-count value of 0.5219 <0.05 and suggestions for further researchers to be able to analyze other factors that affecting gas consumption in Indonesia.  Because from the gas sectors, there are still many factors that affected gas consumption until the research results will be better


2010 ◽  
Vol 4 ◽  
pp. BBI.S5983 ◽  
Author(s):  
Daisuke Tominaga

Time series of gene expression often exhibit periodic behavior under the influence of multiple signal pathways, and are represented by a model that incorporates multiple harmonics and noise. Most of these data, which are observed using DNA microarrays, consist of few sampling points in time, but most periodicity detection methods require a relatively large number of sampling points. We have previously developed a detection algorithm based on the discrete Fourier transform and Akaike's information criterion. Here we demonstrate the performance of the algorithm for small-sample time series data through a comparison with conventional and newly proposed periodicity detection methods based on a statistical analysis of the power of harmonics. We show that this method has higher sensitivity for data consisting of multiple harmonics, and is more robust against noise than other methods. Although “combinatorial explosion” occurs for large datasets, the computational time is not a problem for small-sample datasets. The MATLAB/GNU Octave script of the algorithm is available on the author's web site: http://www.cbrc.jp/%7Etominaga/piccolo/ .


2021 ◽  
Author(s):  
Valentin Buck ◽  
Flemming Stäbler ◽  
Everardo Gonzalez ◽  
Jens Greinert

&lt;p&gt;The study of the earth&amp;#8217;s systems depends on a large amount of observations from homogeneous sources, which are usually scattered around time and space and are tightly intercorrelated to each other. The understanding of said systems depends on the ability to access diverse data types and contextualize them in a global setting suitable for their exploration. While the collection of environmental data has seen an enormous increase over the last couple of decades, the development of software solutions necessary to integrate observations across disciplines seems to be lagging behind. To deal with this issue, we developed the Digital Earth Viewer: a new program to access, combine, and display geospatial data from multiple sources over time.&lt;/p&gt;&lt;p&gt;Choosing a new approach, the software displays space in true 3D and treats time and time ranges as true dimensions. This allows users to navigate observations across spatio-temporal scales and combine data sources with each other as well as with meta-properties such as quality flags. In this way, the Digital Earth Viewer supports the generation of insight from data and the identification of observational gaps across compartments.&lt;/p&gt;&lt;p&gt;Developed as a hybrid application, it may be used both in-situ as a local installation to explore and contextualize new data, as well as in a hosted context to present curated data to a wider audience.&lt;/p&gt;&lt;p&gt;In this work, we present this software to the community, show its strengths and weaknesses, give insight into the development process and talk about extending and adapting the software to custom usecases.&lt;/p&gt;


2018 ◽  
Vol 145 ◽  
pp. 97-104 ◽  
Author(s):  
Ronakben Bhavsar ◽  
Na Helian ◽  
Yi Sun ◽  
Neil Davey ◽  
Tony Steffert ◽  
...  

2020 ◽  
Vol 496 (1) ◽  
pp. 629-637
Author(s):  
Ce Yu ◽  
Kun Li ◽  
Shanjiang Tang ◽  
Chao Sun ◽  
Bin Ma ◽  
...  

ABSTRACT Time series data of celestial objects are commonly used to study valuable and unexpected objects such as extrasolar planets and supernova in time domain astronomy. Due to the rapid growth of data volume, traditional manual methods are becoming extremely hard and infeasible for continuously analysing accumulated observation data. To meet such demands, we designed and implemented a special tool named AstroCatR that can efficiently and flexibly reconstruct time series data from large-scale astronomical catalogues. AstroCatR can load original catalogue data from Flexible Image Transport System (FITS) files or data bases, match each item to determine which object it belongs to, and finally produce time series data sets. To support the high-performance parallel processing of large-scale data sets, AstroCatR uses the extract-transform-load (ETL) pre-processing module to create sky zone files and balance the workload. The matching module uses the overlapped indexing method and an in-memory reference table to improve accuracy and performance. The output of AstroCatR can be stored in CSV files or be transformed other into formats as needed. Simultaneously, the module-based software architecture ensures the flexibility and scalability of AstroCatR. We evaluated AstroCatR with actual observation data from The three Antarctic Survey Telescopes (AST3). The experiments demonstrate that AstroCatR can efficiently and flexibly reconstruct all time series data by setting relevant parameters and configuration files. Furthermore, the tool is approximately 3× faster than methods using relational data base management systems at matching massive catalogues.


Sign in / Sign up

Export Citation Format

Share Document