scholarly journals The More Extreme Nature of North American Monsoon Precipitation in the Southwestern United States as Revealed by a Historical Climatology of Simulated Severe Weather Events

2017 ◽  
Vol 56 (9) ◽  
pp. 2509-2529 ◽  
Author(s):  
Thang M. Luong ◽  
Christopher L. Castro ◽  
Hsin-I Chang ◽  
Timothy Lahmers ◽  
David K. Adams ◽  
...  

AbstractLong-term changes in North American monsoon (NAM) precipitation intensity in the southwestern United States are evaluated through the use of convective-permitting model simulations of objectively identified severe weather events during “historical past” (1950–70) and “present day” (1991–2010) periods. Severe weather events are the days on which the highest atmospheric instability and moisture occur within a long-term regional climate simulation. Simulations of severe weather event days are performed with convective-permitting (2.5 km) grid spacing, and these simulations are compared with available observed precipitation data to evaluate the model performance and to verify any statistically significant model-simulated trends in precipitation. Statistical evaluation of precipitation extremes is performed using a peaks-over-threshold approach with a generalized Pareto distribution. A statistically significant long-term increase in atmospheric moisture and instability is associated with an increase in extreme monsoon precipitation in observations and simulations of severe weather events, corresponding to similar behavior in station-based precipitation observations in the Southwest. Precipitation is becoming more intense within the context of the diurnal cycle of convection. The largest modeled increases in extreme-event precipitation occur in central and southwestern Arizona, where mesoscale convective systems account for a majority of monsoon precipitation and where relatively large modeled increases in precipitable water occur. Therefore, it is concluded that a more favorable thermodynamic environment in the southwestern United States is facilitating stronger organized monsoon convection during at least the last 20 years.

2009 ◽  
Vol 22 (22) ◽  
pp. 5918-5932 ◽  
Author(s):  
Jeremy L. Weiss ◽  
Christopher L. Castro ◽  
Jonathan T. Overpeck

Abstract Higher temperatures increase the moisture-holding capacity of the atmosphere and can lead to greater atmospheric demand for evapotranspiration, especially during warmer seasons of the year. Increases in precipitation or atmospheric humidity ameliorate this enhanced demand, whereas decreases exacerbate it. In the southwestern United States (Southwest), this means the greatest changes in evapotranspirational demand resulting from higher temperatures could occur during the hot–dry foresummer and hot–wet monsoon. Here seasonal differences in surface climate observations are examined to determine how temperature and moisture conditions affected evapotranspirational demand during the pronounced Southwest droughts of the 1950s and 2000s, the latter likely influenced by warmer temperatures now attributed mostly to the buildup of greenhouse gases. In the hot–dry foresummer during the 2000s drought, much of the Southwest experienced significantly warmer temperatures that largely drove greater evapotranspirational demand. Lower atmospheric humidity at this time of year over parts of the region also allowed evapotranspirational demand to increase. Significantly warmer temperatures in the hot–wet monsoon during the more recent drought also primarily drove greater evapotranspirational demand, but only for parts of the region outside of the core North American monsoon area. Had atmospheric humidity during the more recent drought been as low as during the 1950s drought in the core North American monsoon area at this time of year, greater evapotranspirational demand during the 2000s drought could have been more spatially extensive. With projections of future climate indicating continued warming in the region, evapotranspirational demand during the hot–dry and hot–wet seasons possibly will be more severe in future droughts and result in more extreme conditions in the Southwest, a disproportionate amount negatively impacting society.


2007 ◽  
Vol 20 (9) ◽  
pp. 1628-1648 ◽  
Author(s):  
Richard H. Johnson ◽  
Paul E. Ciesielski ◽  
Brian D. McNoldy ◽  
Peter J. Rogers ◽  
Richard K. Taft

Abstract The 2004 North American Monsoon Experiment (NAME) provided an unprecedented observing network for studying the structure and evolution of the North American monsoon. This paper focuses on multiscale characteristics of the flow during NAME from the large scale to the mesoscale using atmospheric sounding data from the enhanced observing network. The onset of the 2004 summer monsoon over the NAME region accompanied the typical northward shift of the upper-level anticyclone or monsoon high over northern Mexico into the southwestern United States, but in 2004 this shift occurred slightly later than normal and the monsoon high did not extend as far north as usual. Consequently, precipitation over the southwestern United States was slightly below normal, although increased troughiness over the Great Plains contributed to increased rainfall over eastern New Mexico and western Texas. The first major pulse of moisture into the Southwest occurred around 13 July in association with a strong Gulf of California surge. This surge was linked to the westward passages of Tropical Storm Blas to the south and an upper-level inverted trough over northern Texas. The development of Blas appeared to be favored as an easterly wave moved into the eastern Pacific during the active phase of a Madden–Julian oscillation. On the regional scale, sounding data reveal a prominent sea breeze along the east shore of the Gulf of California, with a deep return flow as a consequence of the elevated Sierra Madre Occidental (SMO) immediately to the east. Subsidence produced a dry layer over the gulf, whereas a deep moist layer existed over the west slopes of the SMO. A prominent nocturnal low-level jet was present on most days over the northern gulf. The diurnal cycle of heating and moistening (Q1 and Q2) over the SMO was characterized by deep convective profiles in the mid- to upper troposphere at 1800 LT, followed by stratiform-like profiles at midnight, consistent with the observed diurnal evolution of precipitation over this coastal mountainous region. The analyses in the core NAME domain are based on a gridded dataset derived from atmospheric soundings only and, therefore, should prove useful in validating reanalyses and regional models.


2016 ◽  
Vol 29 (21) ◽  
pp. 7911-7936 ◽  
Author(s):  
Salvatore Pascale ◽  
Simona Bordoni ◽  
Sarah B. Kapnick ◽  
Gabriel A. Vecchi ◽  
Liwei Jia ◽  
...  

Abstract The impact of atmosphere and ocean horizontal resolution on the climatology of North American monsoon Gulf of California (GoC) moisture surges is examined in a suite of global circulation models (CM2.1, FLOR, CM2.5, CM2.6, and HiFLOR) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). These models feature essentially the same physical parameterizations but differ in horizontal resolution in either the atmosphere (≃200, 50, and 25 km) or the ocean (≃1°, 0.25°, and 0.1°). Increasing horizontal atmospheric resolution from 200 to 50 km results in a drastic improvement in the model’s capability of accurately simulating surge events. The climatological near-surface flow and moisture and precipitation anomalies associated with GoC surges are overall satisfactorily simulated in all higher-resolution models. The number of surge events agrees well with reanalyses, but models tend to underestimate July–August surge-related precipitation and overestimate September surge-related rainfall in the southwestern United States. Large-scale controls supporting the development of GoC surges, such as tropical easterly waves (TEWs), tropical cyclones (TCs), and trans-Pacific Rossby wave trains (RWTs), are also well captured, although models tend to underestimate the TEW and TC magnitude and number. Near-surface GoC surge features and their large-scale forcings (TEWs, TCs, and RWTs) do not appear to be substantially affected by a finer representation of the GoC at higher ocean resolution. However, the substantial reduction of the eastern Pacific warm sea surface temperature bias through flux adjustment in the Forecast-Oriented Low Ocean Resolution (FLOR) model leads to an overall improvement of tropical–extratropical controls on GoC moisture surges and the seasonal cycle of precipitation in the southwestern United States.


2007 ◽  
Vol 20 (9) ◽  
pp. 1923-1935 ◽  
Author(s):  
Katrina Grantz ◽  
Balaji Rajagopalan ◽  
Martyn Clark ◽  
Edith Zagona

Abstract Analysis is performed on the spatiotemporal attributes of North American monsoon system (NAMS) rainfall in the southwestern United States. Trends in the timing and amount of monsoon rainfall for the period 1948–2004 are examined. The timing of the monsoon cycle is tracked by identifying the Julian day when the 10th, 25th, 50th, 75th, and 90th percentiles of the seasonal rainfall total have accumulated. Trends are assessed using the robust Spearman rank correlation analysis and the Kendall–Theil slope estimator. Principal component analysis is used to extract the dominant spatial patterns and these are correlated with antecedent land–ocean–atmosphere variables. Results show a significant delay in the beginning, peak, and closing stages of the monsoon in recent decades. The results also show a decrease in rainfall during July and a corresponding increase in rainfall during August and September. Relating these attributes of the summer rainfall to antecedent winter–spring land and ocean conditions leads to the proposal of the following hypothesis: warmer tropical Pacific sea surface temperatures (SSTs) and cooler northern Pacific SSTs in the antecedent winter–spring leads to wetter than normal conditions over the desert Southwest (and drier than normal conditions over the Pacific Northwest). This enhanced antecedent wetness delays the seasonal heating of the North American continent that is necessary to establish the monsoonal land–ocean temperature gradient. The delay in seasonal warming in turn delays the monsoon initiation, thus reducing rainfall during the typical early monsoon period (July) and increasing rainfall during the later months of the monsoon season (August and September). While the rainfall during the early monsoon appears to be most modulated by antecedent winter–spring Pacific SST patterns, the rainfall in the later part of the monsoon seems to be driven largely by the near-term SST conditions surrounding the monsoon region along the coast of California and the Gulf of California. The role of antecedent land and ocean conditions in modulating the following summer monsoon appears to be quite significant. This enhances the prospects for long-lead forecasts of monsoon rainfall over the southwestern United States, which could have significant implications for water resources planning and management in this water-scarce region.


2019 ◽  
Vol 20 (7) ◽  
pp. 1449-1471 ◽  
Author(s):  
Long Yang ◽  
James Smith ◽  
Mary Lynn Baeck ◽  
Efrat Morin

Abstract Flash flooding in the arid/semiarid southwestern United States is frequently associated with convective rainfall during the North American monsoon. In this study, we examine flood-producing storms in central Arizona based on analyses of dense rain gauge observations and stream gauging records as well as North American Regional Reanalysis fields. Our storm catalog consists of 102 storm events during the period of 1988–2014. Synoptic conditions for flood-producing storms are characterized based on principal component analyses. Four dominant synoptic modes are identified, with the first two modes explaining approximately 50% of the variance of the 500-hPa geopotential height. The transitional synoptic pattern from the North American monsoon regime to midlatitude systems is a critical large-scale feature for extreme rainfall and flooding in central Arizona. Contrasting spatial rainfall organizations and storm environment under the four synoptic modes highlights the role of interactions among synoptic conditions, mesoscale processes, and complex terrains in determining space–time variability of convective activities and flash flood hazards in central Arizona. We characterize structure and evolution properties of flood-producing storms based on storm tracking algorithms and 3D radar reflectivity. Fast-moving storm elements can be important ingredients for flash floods in the arid/semiarid southwestern United States. Contrasting storm properties for cloudburst storms highlight the wide spectrum of convective intensities for extreme rain rates in the arid/semiarid southwestern United States and exhibit comparable vertical structures to their counterparts in the eastern United States.


Author(s):  
Sage Ellis ◽  
Madeleine Lohman ◽  
James Sedinger ◽  
Perry Williams ◽  
Thomas Riecke

Sex ratios affect population dynamics and individual fitness, and changing sex ratios can be indicative of shifts in sex-specific survival at different life stages. While climate- and landscape-change alter sex ratios of wild bird populations, long-term, landscape scale assessments of sex ratios are rare. Further, little work has been done to understand changes in sex ratios in avian communities. In this manuscript, we analyse long-term (1961-2015) data on five species of ducks across five broad climatic regions of the United States to estimate the effects of drought and long-term trends on the proportion of juvenile females captured at banding. As waterfowl have a 1:1 sex ratio at hatch, we interpret changes in sex ratios of captured juveniles as changes in sex-specific survival rates during early life. Seven of twelve species-region pairs exhibited evidence for long-term trends in the proportion of juvenile females at banding. The proportion of juvenile females at banding increased for duck populations in the western United States and typically declined for duck populations in the eastern United States. We only observed evidence for an effect of drought in two of the twelve species-region pairs, where the proportion of females declined during drought. As changes to North American landscapes and climate continue and intensify, we expect continued changes in sex-specific juvenile survival rates. More broadly, we encourage further research examining the mechanisms underlying long-term trends in juvenile sex ratios in avian communities.


2008 ◽  
Vol 21 (11) ◽  
pp. 2664-2679 ◽  
Author(s):  
Xianan Jiang ◽  
Ngar-Cheung Lau

Abstract Based on a recently released, high-resolution reanalysis dataset for the North American region, the intraseasonal variability (ISV; with a time scale of about 20 days) of the North American monsoon (NAM) is examined. The rainfall signals associated with this phenomenon first emerge near the Gulf of Mexico and eastern Pacific at about 20°N. They subsequently migrate to the southwestern United States along the slope of the Sierra Madre Occidental. The rainfall quickly dissipates upon arrival at the desert region of Arizona and New Mexico (AZNM). The enhanced rainfall over AZNM is accompanied by strong southeasterly low-level flow along the Gulf of California. This pattern bears strong resemblance to the circulation related to “gulf surge” events, as documented by many studies. The southeasterly flow is associated with an anomalous low vortex over the subtropical eastern Pacific Ocean off California, and a midlatitude anticyclone over the central United States in the lower troposphere. This flow pattern is in broad agreement with that favoring the “wet surges” over the southwestern United States. It is further demonstrated that the aforementioned low-level circulations associated with ISV of the NAM are part of a prominent trans-Pacific wave train extending from the western North Pacific (WNP) to the Eastern Pacific/North America along a “great circle” path. The circulation anomalies along the axis of this wave train exhibit a barotropic vertical structure over most regions outside of the WNP, and a baroclinic structure over the WNP, thus suggesting the important role of convective activities over the WNP in sustaining this wave train. This inference is further substantiated by an analysis of the pattern of wave-activity–flux vectors. Variations in the WNP convection are correlated with the ISV of the monsoons in both North American and East Asian (EA)/WNP sectors. These relationships lead to notable teleconnections between NAM and the EA/WNP monsoon on 20-day time scales.


Sign in / Sign up

Export Citation Format

Share Document