scholarly journals Precipitation Clouds Delineation Scheme in Tropical Cyclones and Its Validation Using Precipitation and Cloud Parameter Datasets from TRMM

2018 ◽  
Vol 57 (4) ◽  
pp. 821-836 ◽  
Author(s):  
FengJiao Chen ◽  
ShaoXue Sheng ◽  
ZhengQing Bao ◽  
HuaYang Wen ◽  
LianSheng Hua ◽  
...  

AbstractUtilizing the cloud parameters derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner and the near-surface rainfall detected by the TRMM Precipitation Radar, the differences of cloud parameters for precipitating clouds (PCs) and nonprecipitating clouds (NPCs) are examined in tropical cyclones (TCs) during daytime from June to September 1998–2010. A precipitation delineation scheme that is based on cloud parameter thresholds is proposed and validated using the independent TC datasets in 2011 and observational datasets from Terra/MODIS. Statistical analysis of these results shows that the differences in the effective radius of cloud particles Re are small for PCs and NPCs, while thick clouds with large cloud optical thickness (COT) and liquid water path (LWP) can be considered as candidates for PCs. The probability of precipitation increases rapidly as the LWP and COT increase, reaching ~90%, whereas the probability of precipitation reaches a peak value of only 30% as Re increases. The combined threshold of a brightness temperature at 10.8 μm (BT4) of 270 K and an LWP of 750 g m−2 shows the best performance for precipitation discrimination at the pixel levels, with the probability of detection (POD) reaching 68.2% and false-alarm ratio (FAR) reaching 31.54%. From MODIS observations, the composite scheme utilizing BT4 and LWP also proves to be a good index, with POD reaching 77.39% and FAR reaching 24.2%. The results from this study demonstrate a potential application of real-time precipitation monitoring in TCs utilizing cloud parameters from visible and infrared measurements on board geostationary weather satellites.

2016 ◽  
Vol 33 (7) ◽  
pp. 1539-1556 ◽  
Author(s):  
Paula J. Brown ◽  
Christian D. Kummerow ◽  
David L. Randel

AbstractThe Goddard profiling algorithm (GPROF) is an operational passive microwave retrieval that uses a Bayesian scheme to estimate rainfall. GPROF 2014 retrieves rainfall and hydrometeor vertical profile information based upon a database of profiles constructed to be simultaneously consistent with Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI) observations. A small number of tropical cyclones are in the current database constructed from one year of TRMM data, resulting in the retrieval performing relatively poorly for these systems, particularly for the highest rain rates. To address this deficiency, a new database focusing specifically on hurricanes but consisting of 9 years of TRMM data is created. The new database and retrieval procedure for TMI and GMI is called Hurricane GPROF. An initial assessment of seven tropical cyclones shows that Hurricane GPROF provides a better estimate of hurricane rain rates than GPROF 2014. Hurricane GPROF rain-rate errors relative to the PR are reduced by 20% compared to GPROF, with improvements in the lowest and highest rain rates especially. Vertical profile retrievals for four hydrometeors are also enhanced, as error is reduced by 30% compared to the GPROF retrieval, relative to PR estimates. When compared to the full database of tropical cyclones, Hurricane GPROF improves the RMSE and MAE of rain-rate estimates over those from GPROF by about 22% and 27%, respectively. Similar improvements are also seen in the overall rain-rate bias for hurricanes in the database, which is reduced from 0.20 to −0.06 mm h−1.


2014 ◽  
Vol 27 (11) ◽  
pp. 4313-4336 ◽  
Author(s):  
Haiyan Jiang ◽  
Cheng Tao

Abstract Based on the 12-yr (1998–2009) Tropical Rainfall Measuring Mission (TRMM) precipitation feature (PF) database, both radar and infrared (IR) observations from TRMM are used to quantify the contribution of tropical cyclones (TCs) to very deep convection (VDC) in the tropics and to compare TRMM-derived properties of VDC in TCs and non-TCs. Using a radar-based definition, it is found that the contribution of TCs to total VDC in the tropics is not much higher than the contribution of TCs to total PFs. However, the area-based contribution of TCs to overshooting convection defined by IR is 13.3%, which is much higher than the 3.2% contribution of TCs to total PFs. This helps explain the contradictory results between previous radar-based and IR-based studies and indicates that TCs only contribute disproportionately large amount of overshooting convection containing mainly small ice particles that are barely detected by the TRMM radar. VDC in non-TCs over land has the highest maximum 30- and 40-dBZ height and the strongest ice-scattering signature derived from microwave 85- and 37-GHz observations, while VDC in TCs has the coldest minimum IR brightness temperature and largest overshooting distance and area. This suggests that convection is much more intense in non-TCs over land but is much deeper or colder in TCs. It is found that VDC in TCs usually has smaller environmental shear but larger total precipitable water and convective available potential energy than those in non-TCs. These findings offer evidence that TCs may contribute disproportionately to troposphere-to-stratosphere heat and moisture exchange.


2009 ◽  
Vol 22 (3) ◽  
pp. 767-779 ◽  
Author(s):  
Chuntao Liu ◽  
Edward J. Zipser

Abstract How much precipitation is contributed by warm rain systems over the tropics? What is the typical size, intensity, and echo top of warm rain events observed by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar over different regions of the tropics? What proportion of warm raining areas is actually attached to the edges of cold systems? Are there mesoscale warm raining systems, and if so, where and when do they occur? To answer these questions, a 9-yr TRMM precipitation feature database is used in this study. First, warm rain features in 20°S–20°N are selected by specifying precipitation features 1) with minimum infrared brightness temperature > 0°C, 2) with TRMM Precipitation Radar (PR) echo top below freezing level, or 3) without any ice-scattering signature in the microwave observations, respectively. Then, the geographical, seasonal, and diurnal variations of the rain volume inside warm rain features defined in these three ways are presented. The characteristics of warm rain features are summarized. Raining pixels with cloud-top temperature above 0°C contribute 20% of the rainfall over tropical oceans and 7.5% over tropical land. However, about half of the warm pixels over oceans and two-thirds of the warm pixels over land are attached to cold precipitation systems. A large amount of warm rainfall occurs over oceans near windward coasts during winter. Most of the warm rain systems have small size < 100 km2 and weak radar echo with a modal maximum near-surface reflectivity around 23 dBZ. However, mesoscale warm rain systems with strong radar echoes do occur in large regions of the tropical oceans, more during the nighttime than during daytime. Though the mean height of the warm precipitation features over oceans is lower than that over land, there is no significant regional difference in its size and intensity.


2021 ◽  
Vol 13 (5) ◽  
pp. 2293-2306
Author(s):  
Lilu Sun ◽  
Yunfei Fu

Abstract. Clouds and precipitation have vital roles in the global hydrological cycle and the radiation budget of the atmosphere–Earth system and are closely related to both the regional and the global climate. Changes in the status of the atmosphere inside clouds and precipitation systems are also important, but the use of multi-source datasets is hampered by their different spatial and temporal resolutions. We merged the precipitation parameters measured by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) with the multi-channel cloud-top radiance measured by the visible and infrared scanner (VIRS) and atmospheric parameters in the ERA5 reanalysis dataset. The merging of pixels between the precipitation parameters and multi-channel cloud-top radiance was shown to be reasonable. The 1B01-2A25 dataset of pixel-merged data (1B01-2A25-PMD) contains cloud parameters for each PR pixel. The 1B01-2A25 gridded dataset (1B01-2A25-GD) was merged spatially with the ERA5 reanalysis data. The statistical results indicate that gridding has no unacceptable influence on the parameters in 1B01-2A25-PMD. In one orbit, the difference in the mean value of the near-surface rain rate and the signals measured by the VIRS was no more than 0.87 and the standard deviation was no more than 2.38. The 1B01-2A25-GD and ERA5 datasets were spatiotemporally collocated to establish the merged 1B01-2A25 gridded dataset (M-1B01-2A25-GD). Three case studies of typical cloud and precipitation events were analyzed to illustrate the practical use of M-1B01-2A25-GD. This new merged gridded dataset can be used to study clouds and precipitation systems and provides a perfect opportunity for multi-source data analysis and model simulations. The data which were used in this paper are freely available at https://doi.org/10.5281/zenodo.4458868 (Sun and Fu, 2021).


2017 ◽  
Vol 145 (3) ◽  
pp. 795-809 ◽  
Author(s):  
Cheng Tao ◽  
Haiyan Jiang ◽  
Jonathan Zawislak

Using 16-yr Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) observations, rainfall properties in the inner-core region of tropical cyclones (TCs) and the relative importance of stratiform and convective precipitation are examined with respect to the evolution of rapid intensification (RI) events. The onset of RI follows a significant increase in the occurrence and azimuthal coverage of stratiform rainfall in all shear-relative quadrants, especially upshear left. The importance of the increased stratiform occurrence in RI storms is further confirmed by the comparison of two groups of slowly intensifying (SI) storms with one group that underwent RI and the other that did not. Statistically, SI storms that do not undergo RI during their life cycle have a much lower percent occurrence of stratiform rain within the inner core. The relatively greater areal coverage of stratiform rain in RI cases appears to be related to the moistening/humidification of the inner core, particularly in the upshear quadrants. In contrast to rainfall frequency, rainfall intensity and total volumetric rain do not increase much until several hours after RI onset, which is more likely a response or positive feedback rather than the trigger of RI. Despite a low frequency of occurrence, the overall contribution to total volumetric rain by convective precipitation is comparable to that of stratiform rain, owing to its intense rain rate.


2014 ◽  
Vol 71 (8) ◽  
pp. 2789-2809 ◽  
Author(s):  
Joseph P. Zagrodnik ◽  
Haiyan Jiang

Abstract Tropical cyclone (TC) rainfall, convection, and latent heating distributions are compiled from 14 years of Tropical Rainfall Measuring Mission (TRMM) precipitation radar overpasses. The dataset of 818 Northern Hemisphere tropical storms through category 2 hurricanes is divided by future 24-h intensity change and exclusively includes storms with at least moderately favorable environmental conditions. The rapidly intensifying (RI) category is further subdivided into an initial [RI (initial)] and continuing [RI (continuing)] category based on whether the storm is near the beginning of an RI event or has already been undergoing RI for 12 or more hours prior to the TRMM overpass. TCs in each intensity change category are combined into composite diagrams orientated relative to the environmental vertical wind shear direction. Rainfall frequency, defined as the shear-relative occurrence of PR near-surface reflectivity >20 dBZ, is most strongly correlated with future intensity change. The rainfall frequency is also higher in RI (continuing) TCs than RI (initial). Moderate-to-deep convection and latent heating only increase significantly after RI is underway for at least 12 h in the innermost 50 km relative to the TC center. The additional precipitation in rapidly intensifying TCs is composed primarily of a mixture of weak convective and stratiform rain, especially in the upshear quadrants. The rainfall frequency and latent heating distributions are more symmetric near the onset of RI and continue to become more symmetric as RI continues and the rainfall coverage expands upshear. The relationship between rainfall distributions and future TC intensity highlights the potential of 37-GHz satellite imagery to improve real-time intensity forecasting.


2005 ◽  
Vol 44 (11) ◽  
pp. 1677-1690 ◽  
Author(s):  
A. Benedetti ◽  
P. Lopez ◽  
E. Moreau ◽  
P. Bauer ◽  
V. Venugopal

Abstract A validation of passive microwave–adjusted rainfall analyses of tropical cyclones using spaceborne radar data is presented. This effort is part of the one-dimensional plus four-dimensional variational (1D+4D-Var) rain assimilation project that is being carried out at the European Centre for Medium-Range Weather Forecasts (ECMWF). Brightness temperatures or surface rain rates from the Tropical Rainfall Measuring Mission (TRMM) satellite are processed through a 1D-Var retrieval to derive values of total column water vapor that can be ingested into the operational ECMWF 4D-Var. As an indirect validation, the precipitation fields produced at the end of the 1D-Var minimization process are converted into equivalent radar reflectivity at the frequency of the TRMM precipitation radar (13.8 GHz) and are compared with the observations averaged at model resolution. The averaging process is validated using a sophisticated downscaling/upscaling approach that is based on wavelet decomposition. The precipitation radar measurements are ideal for this validation exercise, being approximately collocated with but completely independent of the TRMM Microwave Imager (TMI) radiometer measurements. Qualitative and statistical comparisons between radar observations and retrievals from the TMI-derived surface rain rates and from TMI radiances are made using 17 well-documented tropical cyclone occurrences between January and April of 2003. Several statistical measures, such as bias, root-mean-square error, and Heidke skill score, are introduced to assess the 1D-Var skill as well as the model background skill in producing a realistic rain distribution. Results show a good degree of skill in the retrievals, especially near the surface and for medium–heavy rain. The model background produces precipitation in the domain that is sometimes in excess with respect to the observations, and it often shows an error in the location of precipitation maxima. Differences between the two 1D-Var approaches are not large enough to make final conclusions regarding the advantages of one method over the other. Both methods are capable of redistributing the rain patterns according to the observations. It appears, however, that the brightness temperature approach is in general more effective in increasing precipitation amounts at moderate-to-high rainfall rates.


2013 ◽  
Vol 26 (17) ◽  
pp. 6459-6470 ◽  
Author(s):  
Haiyan Jiang ◽  
Ellen M. Ramirez

Abstract Rainfall and convective properties of tropical cyclones (TCs) are statistically quantified for different TC intensity change categories by using Tropical Rainfall Measuring Mission (TRMM) data from December 1997 to December 2008. Four 24-h future intensity change categories are defined: rapidly intensifying (RI), slowly intensifying, neutral, and weakening. It is found that RI storms always have a larger raining area and total volumetric rain in the inner core. The maximum convective intensity in the inner core is not necessarily more intense prior to undergoing an RI episode than a slowly intensifying, neutral, or weakening episode. Instead, a minimum threshold of raining area, total volumetric rain, and convective intensity in the inner core is determined from the RI cases examined in this study. The following necessary conditions for RI are found in the inner core: total raining area > 3000 km2, total volumetric rain > 5000 mm h−1 km2, maximum near-surface radar reflectivity > 40 dBZ, maximum 20-dBZ (40 dBZ) echo height > 8 (4) km, minimum 85-GHz polarization–corrected brightness temperature (PCT) < 235 K, and minimum 10.8-μm brightness temperature < 220 K. To the extent that these thresholds represent all RI cases, they should be of value to forecasters for ruling out RI. This study finds that total lightning activities in the inner core (outer rainband) have a negative (positive) relationship with storm intensification.


2010 ◽  
Vol 23 (2) ◽  
pp. 419-439 ◽  
Author(s):  
Ulrike Romatschke ◽  
Socorro Medina ◽  
Robert A. Houze

Abstract Temporal and spatial variations of convection in South Asia are analyzed using eight years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data and NCEP reanalysis fields. To identify the most extreme convective features, three types of radar echo structures are defined: deep convective cores (contiguous 3D convective echo ≥40 dBZ extending ≥10 km in height) represent the most vertically penetrative convection, wide convective cores (contiguous convective ≥40 dBZ echo over a horizontal area ≥1000 km2) indicate wide regions of intense multicellular convection, and broad stratiform regions (stratiform echo contiguous over an area ≥50 000 km2) mark the mesoscale convective systems that have developed the most robust stratiform regions. The preferred locations of deep convective cores change markedly from India’s east coast in the premonsoon to the western Himalayan foothills in the monsoon. They form preferentially in the evening and over land as near-surface moist flow is capped by dry air aloft. Continental wide convective cores show a similar behavior with an additional nocturnal peak during the monsoon along the Himalayan foothills that is associated with convergence of downslope flow from the Himalayas with moist monsoonal winds at the foothills. The oceanic wide convective cores have a relatively weak diurnal cycle with a midday maximum. Convective systems exhibiting broad stratiform regions occur primarily in the rainiest season and regions—during the monsoon, over the ocean upstream of coastal mountains. Their diurnal patterns are similar to those of the wide convective cores.


2015 ◽  
Vol 28 (22) ◽  
pp. 8791-8824 ◽  
Author(s):  
Cheng Tao ◽  
Haiyan Jiang

Abstract Shear-relative distributions of four types of precipitation/convection in tropical cyclones (TCs) are statistically analyzed using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data. The dataset of 1139 TRMM PR overpasses of tropical storms through category-2 hurricanes over global TC-prone basins is divided by future 24-h intensity change. It is found that increased and widespread shallow precipitation (defined as where the 20-dBZ radar echo height <6 km) around the storm center is a first sign of rapid intensification (RI) and could be used as a predictor of the onset of RI. The contribution to total volumetric rain and latent heating from shallow and moderate precipitation (20-dBZ echo height between 6 and 10 km) in the inner core is greater in RI storms than in non-RI storms, while the opposite is true for moderately deep (20-dBZ echo height between 10 and 14 km) and very deep precipitation (20-dBZ echo height ≥14 km). The authors argue that RI is more likely triggered by the increase of shallow–moderate precipitation and the appearance of more moderately to very deep convection in the middle of RI is more likely a response or positive feedback to changes in the vortex. For RI storms, a cyclonic rotation of frequency peaks from shallow (downshear right) to moderate (downshear left) to moderately and very deep precipitation (upshear left) is found and may be an indicator of a rapidly strengthening vortex. A ring of almost 90% occurrence of total precipitation is found for storms in the middle of RI, consistent with the previous finding of the cyan and pink ring on the 37-GHz color product.


Sign in / Sign up

Export Citation Format

Share Document