scholarly journals Synergy of Satellite- and Ground-Based Observations for Continuous Monitoring of Atmospheric Stability, Liquid Water Path, and Integrated Water Vapor: Theoretical Evaluations Using Reanalysis and Neural Networks

2020 ◽  
Vol 59 (7) ◽  
pp. 1153-1170
Author(s):  
Maria Toporov ◽  
Ulrich Löhnert

AbstractAtmospheric stability plays an essential role in the evolution of weather events. While the upper troposphere is sampled by satellite sensors, and in situ sensors measure the atmospheric state close to the surface, only sporadic information from radiosondes or aircraft observations is available in the planetary boundary layer. Ground-based remote sensing offers the possibility to continuously and automatically monitor the atmospheric state in the boundary layer. Microwave radiometers (MWR) provide temporally resolved temperature and humidity profiles in the boundary layer and accurate values of integrated water vapor and liquid water path, and the differential absorption lidar (DIAL) measures humidity profiles with high vertical and temporal resolution up to 3000-m height. Both instruments have the potential to complement satellite observations by additional information from the lowest atmospheric layers, particularly under cloudy conditions. This study presents a neural network retrieval for stability indices, integrated water vapor, and liquid water path from simulated satellite- and ground-based measurements based on the COSMO regional reanalysis (COSMO-REA2). Focusing on the temporal resolution, the satellite-based instruments considered in the study are the currently operational Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the future Infrared Sounder (IRS), both in geostationary orbit. Relative to the retrieval based on satellite observations, the additional ground-based MWR/DIAL measurements provide valuable improvements not only in the presence of clouds, which represent a limiting factor for infrared SEVIRI/IRS, but also under clear-sky conditions. The root-mean-square error for convective available potential energy, for instance, is reduced by 24% if IRS observations are complemented by ground-based MWR measurements.

2015 ◽  
Vol 72 (5) ◽  
pp. 2033-2040 ◽  
Author(s):  
Mohamed S. Ghonima ◽  
Joel R. Norris ◽  
Thijs Heus ◽  
Jan Kleissl

Abstract A detailed derivation of stratocumulus cloud thickness and liquid water path tendencies as a function of the well-mixed boundary layer mass, heat, and moisture budget equations is presented. The derivation corrects an error in the cloud thickness tendency equation derived by R. Wood to make it consistent with the liquid water path tendency equation derived by J. J. van der Dussen et al. The validity of the tendency equations is then tested against the output of large-eddy simulations of a typical stratocumulus-topped boundary layer case and is found to be in good agreement.


2003 ◽  
Vol 16 (18) ◽  
pp. 2997-3009 ◽  
Author(s):  
Manajit Sengupta ◽  
Eugene E. Clothiaux ◽  
Thomas P. Ackerman ◽  
Seiji Kato ◽  
Qilong Min

2007 ◽  
Vol 135 (7) ◽  
pp. 2786-2793 ◽  
Author(s):  
Stephan R. de Roode

Abstract Results from simulations of the stratocumulus-topped boundary layer with one-dimensional versions of general simulation models typically exhibit a wide range of spread in the modeled liquid water path (LWP). These discrepancies are often attributed to differences in the modeled entrainment rate. Results from a large eddy simulation of the First International Satellite Cloud Climatology Project Regional Experiment I stratocumulus case are analyzed. The diagnosed eddy diffusivities for heat and moisture are found to differ by about a factor of 3. Moreover, both have a much larger magnitude than the ones typically applied in boundary layer parameterization schemes. Motivated by these results mean state solutions are analyzed for the specific case in which the vertical fluxes of heat and moisture are prescribed, whereas eddy diffusivity profiles are systematically varied by multiplication with a constant factor. The solutions demonstrate that any value, ranging from zero to a maximum adiabatic value, can be obtained for the LWP. In the subtropical parts over the ocean where horizontally extended stratocumulus fields persist, the surface sensible heat flux is typically small, whereas surface evaporation and entrainment of relatively dry air from above the surface can result in significant moisture fluxes. If the eddy diffusivity values are small, then the mean specific humidity will tend to decrease quite rapidly with height in order to support the humidity flux. This results in erroneous low humidity values in the upper part of the boundary layers causing low LWP values.


2010 ◽  
Vol 10 (21) ◽  
pp. 10541-10559 ◽  
Author(s):  
S. J. Abel ◽  
D. N. Walters ◽  
G. Allen

Abstract. Observations in the subtropical southeast Pacific obtained during the VOCALS-REx field experiment are used to evaluate the representation of stratocumulus cloud in the Met Office forecast model and to identify key areas where model biases exist. Marked variations in the large scale structure of the cloud field were observed during the experiment on both day-to-day and on diurnal timescales. In the remote maritime region the model is shown to have a good representation of synoptically induced variability in both cloud cover and marine boundary layer depth. Satellite observations show a strong diurnal cycle in cloud fraction and liquid water path in the stratocumulus with enhanced clearances of the cloud deck along the Chilean and Peruvian coasts on certain days. The model accurately simulates the phase of the diurnal cycle but is unable to capture the coastal clearing of cloud. Observations along the 20° S latitude line show a gradual increase in the depth of the boundary layer away from the coast. This trend is well captured by the model (typical low bias of 200 m) although significant errors exist at the coast where the model marine boundary layer is too shallow and moist. Drizzle in the model responds to changes in liquid water path in a manner that is consistent with previous ship-borne observations in the region although the intensity of this drizzle is likely to be too high, particularly in the more polluted coastal region where higher cloud droplet number concentrations are typical. Another mode of variability in the cloud field that the model is unable to capture are regions of pockets of open cellular convection embedded in the overcast stratocumulus deck and an example of such a feature that was sampled during VOCALS-REx is shown.


2012 ◽  
Vol 5 (6) ◽  
pp. 8085-8130
Author(s):  
V. Meunier ◽  
U. Löhnert ◽  
P. Kollias ◽  
S. Crewell

Abstract. More so than the traditional fixed radiometers, the scanning radiometer requires a careful design to ensure high quality measurements. Here the impact of the radiometer characteristics (e.g. antenna beam width, receiver bandwidth) and atmospheric propagation (e.g. curvature of the earth and refractivity) on the scanning radiometer measurements are presented. A forward radiative transfer model that includes all these effects to represent the instrument measurements is used to estimate the biases as differences between the measurement with and without these characteristics for three commonly used frequency bands: K, V and W-band. The receiver channel bandwidth errors are not so important in K-band and W-band. Thus, the use of a wider bandwidth to improve detection at low signal-to-noise conditions is acceptable. The impact of the antenna beam width is higher than the receiver bandwidth, but, for V-band where they are of similar importance. Using simple regression algorithms, the effects of the bandwidth and beam width biases in liquid water path, integrated water vapor, and temperature are also examined. The largest errors in liquid water path and integrated water vapor are associated with the beam width errors.


2019 ◽  
Author(s):  
Marek Jacob ◽  
Felix Ament ◽  
Manuel Gutleben ◽  
Heike Konow ◽  
Mario Mech ◽  
...  

Abstract. Clouds are a strongly variable component of the climate system and several studies have identified especially marine low level clouds to play a critical role for the climate. Liquid water path (LWP) is an important quantity to characterize clouds. Passive microwave satellite sensors provide the most direct estimate on global scale, but suffer from high uncertainties due to large footprints and the superposition of cloud and precipitation signals. Here, we use high spatial resolution airborne microwave radiometer (MWR) measurements together with cloud radar and lidar observations to better understand LWP of warm clouds over the tropical North Atlantic. The nadir measurements were taken by the German High Altitude and Long range research aircraft (HALO) in December 2013 (dry season) and August 2016 (wet season) during two Next generation Advanced Remote sensing for VALidation campaigns (NARVAL). Microwave retrievals of integrated water vapor (IWV), LWP and rain water path (RWP) are developed using artificial neural network techniques and a unique database based on cloud-resolving model simulations with 1.25 km grid spacing. The IWV and LWP retrievals share the same eight MWR frequency channels as their sole input. The comparison of retrieved IWV with coincident dropsondes and water vapor lidar measurements shows root-mean-square deviations below 1.4 kg m−2 over the range from 20 to 60 kg m−2. This comparison raises the confidence in LWP retrievals which can only be assessed theoretically. The theoretical analysis shows the dependency of the uncertainty on LWP itself as the error is below 20 g m−2 for LWP below 100 g m−2 and below 20 % above. The identification of clear sky scenes by ancillary measurements, here backscatter lidar, is crucial for thin clouds (LWP < 12 g m−2) as the microwave retrieved LWP uncertainty is higher than 100 %. The RWP retrieval combines active and passive microwave observations and is able to detect drizzle and light precipitation. The analysis of both campaigns reveals that clouds were more frequent in the dry than in the wet season and their LWP and RWP were higher, but microwave scattering of ice was observed more frequently in the wet season (1.6 % vs. 0.5 % of the time). As to be expected, the observed IWV clearly shows that the wet season (mean IWV = 41 kg m−2) is more humid than the dry season (mean IWV = 28 kg m−2). The results reveal that the observed frequency distributions of IWV are strongly affected by the choice of the flight pattern. Therefore, the airborne observations need to be used carefully to mediate between long-term ground-based and spaceborne measurements to draw statistically sound conclusions.


2011 ◽  
Vol 11 (1) ◽  
pp. 885-916 ◽  
Author(s):  
H. Wang ◽  
P. J. Rasch ◽  
G. Feingold

Abstract. We use a cloud-system-resolving model to study marine-cloud brightening. We examine how injected aerosol particles that act as cloud condensation nuclei (CCN) are transported within the marine boundary layer and how the additional particles in clouds impact cloud microphysical processes, and feedback on dynamics. Results show that the effectiveness of cloud brightening depends strongly on meteorological and background aerosol conditions. Cloud albedo enhancement is very effective in a weakly precipitating boundary layer and in CCN-limited conditions preceded by heavy and/or persistent precipitation. The additional CCN help sustain cloud water by weakening the precipitation substantially in the former case and preventing the boundary layer from collapse in the latter. For a given amount of injected CCN, the injection method (i.e., number and distribution of sprayers) is critical to the spatial distribution of these CCN. Both the areal coverage and the number concentration of injected particles are key players but neither one always emerges as more important than the other. The same amount of injected material is much less effective in either strongly precipitating clouds or polluted clouds, and it is ineffective in a relatively dry boundary layer that supports clouds of low liquid water path. In the polluted case and "dry" case, the CCN injection increases drop number concentration but lowers supersaturation and liquid water path. As a result, the cloud experiences very weak albedo enhancement, regardless of the injection method.


Sign in / Sign up

Export Citation Format

Share Document