scholarly journals Concentration, Size Distribution, and Formation of Trimethylaminium and Dimethylaminium Ions in Atmospheric Particles over Marginal Seas of China*

2015 ◽  
Vol 72 (9) ◽  
pp. 3487-3498 ◽  
Author(s):  
Qingjing Hu ◽  
Peiran Yu ◽  
Yujiao Zhu ◽  
Kai Li ◽  
Huiwang Gao ◽  
...  

Abstract In this paper, the concentration, the size distribution, and the formation of dimethylaminium (DMA+) and trimethylaminium (TMA+) ions in atmospheric particles were studied during a cruise campaign over the Yellow Sea and the Bohai Sea of China in May 2012. The concentrations of DMA+ and TMA+ in particles smaller than 11 µm were 4.4 ± 3.7 and 7.2 ± 7.1 nmol m−3, respectively. The two ions had a good correlation (R2 = 0.86), and both had a moderately good correlation with chlorophyll a fluorescence (R2 = 0.66–0.67). The observed concentrations were from one to three orders of magnitude larger than the concentrations reported in other marine atmospheres. They were also much larger than the values observed at a coastal site neighboring the Yellow Sea in May–June 2013. The high concentrations of DMA+ and TMA+ observed in the marine atmosphere were probably associated with local biogenic activity instead of the long-range transport of these species from adjacent continents. The calculated mole ratios of (DMA+ + TMA+) to in different-sized particles over the seas indicated that (DMA+ + TMA+) most likely played an important role in neutralizing acidic species in particles less than 0.43 µm but not in particles of other sizes. Size distributions of DMA+ and TMA+ in the marine and coastal atmospheres were analyzed in terms of the respective contribution of gas–particle partitioning, cloud/fog processing of TMA+ and DMA+, bioaerosols, and sea-salt aerosols to the observed concentrations of the two ions over the seas.

2016 ◽  
Vol 13 (1) ◽  
pp. 127 ◽  
Author(s):  
Yue Liu ◽  
Chun-Ying Liu ◽  
Gui-Peng Yang ◽  
Hong-Hai Zhang ◽  
Sheng-hui Zhang

Environmental context Dimethylsulfide (DMS) is a climatically important biogenic trace gas that is emitted from oceans. This research focuses on the spatiotemporal distributions of DMS and its related compounds, i.e. dimethylsulfoniopropionate (DMSP) and acrylic acid (AA), and the influencing factors in the Yellow Sea and the Bohai Sea during autumn. In addition, the sea-to-air flux of DMS, kinetic responses of DMSP consumption as well as DMS and AA production are also investigated. This study is helpful in understanding the marine sulfur cycle in marginal seas in China. Abstract The biogeochemistry of dimethylsulfoniopropionate (DMSP), dimethylsulfide (DMS) and acrylic acid (AA) in the Yellow Sea (YS) and the Bohai Sea (BS) was investigated in November 2013. The concentrations (and ranges) of total DMSP (DMSPt), dissolved DMSP (DMSPd), DMS and AA in surface waters were 30.71 (1.07–122.50), 6.60 (0.85–35.67), 1.48 (0.53–5.32) and 42.2 (13.8–352.8) nmol L–1 respectively. The concentrations of DMSPd and AA were positively correlated with chlorophyll-a levels, which suggests that phytoplankton biomass has an important function in controlling DMSPd and AA distributions. Furthermore, DMS and AA concentrations revealed significant positive relationships with DMSPd concentrations. The average ratios of AA/(DMSP+AA) and DMS/AA were 53.98 and 7.62% respectively. The vertical profiles of DMSP, DMS and AA were characterised by high concentrations that mostly occur near the surface. Even under highly variable hydrographic conditions, a positive relationship was observed between DMSPt and chlorophyll-a concentrations. The rates of DMSPd consumption, as well as DMS and AA production, significantly varied with marine environments. The sea-to-air fluxes of DMS from the YS and the BS to the atmosphere were estimated to be in the range of 3.01 to 6.91μmol m–2day–1.


2021 ◽  
Author(s):  
Dihui Chen ◽  
Yanjie Shen ◽  
Juntao Wang ◽  
Yang Gao ◽  
Huiwang Gao ◽  
...  

Abstract. To study sea-derived gaseous amines, ammonia, and primary particulate aminium ions in the marine atmospheres of China's marginal seas, an onboard URG-9000D Ambient Ion Monitor-Ion chromatography (AIM-IC, Thermo Fisher) was set up on the front deck of the R/V Dongfanghong 3 to semi-continuously measure the spatiotemporal variations in the concentrations of atmospheric trimethylamine (TMAgas), dimethylamine (DMAgas), and ammonia (NH3gas) along with their particulate matter (PM2.5) counterparts. In this study, we differentiated marine emissions of the gas species originating from continental transport using data obtained from December 9 to 22, 2019 during the cruise over the Yellow and Bohai Seas, facilitated by additional measurements collected at a coastal site near the Yellow Sea during summer 2019. The data obtained during the cruise and the coastal site demonstrated that the observed TMAgas and protonated trimethylamine (TMAH+) in PM2.5 over the Yellow and Bohai Seas overwhelmingly originated from marine sources. During the cruise, there was no significant correlation (P > 0.05) between the simultaneously measured TMAH+ and TMAgas concentrations. Additionally, the concentrations of TMAH+ in the marine atmosphere varied around 0.28 ± 0.18 μg m−3 (average  ±  standard deviation), with several episodic hourly average values exceeding 1 μg m−3, which were approximately one order of magnitude larger than those of TMAgas (approximately 0.031 ± 0.009 μg m−3). Moreover, there was a significant negative correlation (P < 0.01) between the concentrations of TMAH+ and NH4+ in PM2.5 during the cruise. Therefore, the observed TMAH+ in PM2.5 was overwhelmingly derived from primary sea-spray aerosols. Using the TMAgas and TMAH+ in PM2.5 as tracers for sea-derived basic gases and sea-spray particulate aminium ions, the values of non-sea-derived DMAgas and NH3gas, as well as non-sea-spray particulate DMAH+ in PM2.5, were estimated, and the estimated average values of each species contributed to 16 %, 34 %, and 65 % of the observed average concentrations, respectively. Uncertainties remained in the estimations as TMAH+ may decompose into smaller molecules in seawater to varying extents. The non-sea-derived gases and non-sea-spray particulate DMAH+ likely originated from long-range transport from the upwind continents, according to the recorded offshore winds and increased concentrations of SO42− and NH4+ in PM2.5. The lack of a detectable increase in the particulate DMAH+, NH4+, and SO42− concentrations in several SO2 plumes did not support the secondary formation of particulate DMAH+ in the marine atmosphere.


2009 ◽  
Vol 205 (1-4) ◽  
pp. 259-272 ◽  
Author(s):  
J. Y. Kim ◽  
Y. S. Ghim ◽  
S. B. Lee ◽  
K.-C. Moon ◽  
S.-G. Shim ◽  
...  

1993 ◽  
Vol 16 (2) ◽  
pp. 147-163 ◽  
Author(s):  
S.A. Iversen ◽  
D. Zhu ◽  
A. Johannessen ◽  
R. Toresen

2021 ◽  
Vol 21 (21) ◽  
pp. 16413-16425
Author(s):  
Dihui Chen ◽  
Yanjie Shen ◽  
Juntao Wang ◽  
Yang Gao ◽  
Huiwang Gao ◽  
...  

Abstract. To study sea-derived gaseous amines, ammonia, and primary particulate aminium ions in the marine atmosphere of China's marginal seas, an onboard URG-9000D Ambient Ion Monitor-Ion Chromatograph (AIM-IC, Thermo Fisher) was set up on the front deck of the R/V Dongfanghong-3 to semi-continuously measure the spatiotemporal variations in the concentrations of atmospheric trimethylamine (TMAgas), dimethylamine (DMAgas), and ammonia (NH3gas) along with their particulate matter (PM2.5) counterparts. In this study, we differentiated marine emissions of the gas species from continental transport using data obtained from 9 to 22 December 2019 during the cruise over the Yellow and Bohai seas, facilitated by additional short-term measurements collected at a coastal site near the Yellow Sea during the summer, fall, and winter of 2019. The data obtained from the cruise and coastal sites demonstrated that the observed TMAgas and protonated trimethylamine (TMAH+) in PM2.5 over the Yellow and Bohai seas overwhelmingly originated from marine sources. During the cruise, no significant correlation (P>0.05) was observed between the simultaneously measured TMAH+ and TMAgas concentrations. Additionally, the concentrations of TMAH+ in the marine atmosphere varied around 0.28±0.18 µg m−3 (average ± standard deviation), with several episodic hourly average values exceeding 1 µg m−3, which were approximately 1 order of magnitude larger than those of TMAgas (approximately 0.031±0.009 µg m−3). Moreover, there was a significant negative correlation (P<0.01) between the concentrations of TMAH+ and NH4+ in PM2.5. Therefore, the observed TMAH+ in PM2.5 was overwhelmingly derived from primary sea-spray aerosols. Using TMAgas and TMAH+ in PM2.5 as tracers for sea-derived basic gases and sea-spray particulate aminium ions, the values of non-sea-derived DMAgas, NH3gas, and non-sea-spray particulate DMAH+ in PM2.5 were estimated. The estimated average values of each species contributed 16 %, 34 %, and 65 % of the observed average concentrations for non-sea-derived DMAgas, NH3gas, and non-sea-spray particulate DMAH+ in PM2.5, respectively. Uncertainties remained in the estimations, as TMAH+ may decompose into smaller molecules in seawater to varying extents. The non-sea-derived gases and non-sea-spray particulate DMAH+ likely originated from long-range transport from the upwind continents based on the recorded offshore winds and increased concentrations of non-sea-salt SO42- (nss-SO42-) and NH4+ in PM2.5. The lack of a detectable increase in particulate DMAH+, NH4+, and nss-SO42- concentrations in several SO2 plumes did not support the secondary formation of particulate DMAH+ in the marine atmosphere.


Sign in / Sign up

Export Citation Format

Share Document