Investigating the Mechanisms of Diurnal Rainfall Variability Using a Regional Climate Model

2012 ◽  
Vol 25 (20) ◽  
pp. 7232-7247 ◽  
Author(s):  
Jason P. Evans ◽  
Seth Westra

Abstract This study investigates the ability of a regional climate model (RCM) to simulate the diurnal cycle of precipitation over southeast Australia, to provide a basis for understanding the mechanisms that drive diurnal variability. When compared with 195 observation gauges, the RCM tends to simulate too many occurrences and too little intensity for precipitation events at the 3-hourly time scale. However, the overall precipitation amounts are well simulated and the diurnal variability in occurrences and intensities are generally well reproduced, particularly in spring and summer. In terms of precipitation amounts, the RCM overestimated the diurnal cycle during the warmer months but was reasonably accurate during winter. The timing of the maxima and minima was found to match the observed timings well. The spatial pattern of diurnal variability in the Weather Research and Forecasting model outputs was remarkably similar to the observed record, capturing many features of regional variability. The RCM diurnal cycle was dominated by the convective (subgrid scale) precipitation. In the RCM the diurnal cycle of convective precipitation over land corresponds well to atmospheric instability and thermally triggered convection over large areas, and also to the large-scale moisture convergence at 700 hPa along the east coast, with the strongest diurnal cycles present where these three mechanisms are in phase.

2007 ◽  
Vol 8 (4) ◽  
pp. 738-757 ◽  
Author(s):  
Song Yang ◽  
S-H. Yoo ◽  
R. Yang ◽  
K. E. Mitchell ◽  
H. van den Dool ◽  
...  

Abstract This study employs the NCEP Eta Regional Climate Model to investigate the response of the model’s seasonal simulations of summer precipitation to high-frequency variability of soil moisture. Specifically, it focuses on the response of model precipitation and temperature over the U.S. Midwest and Southeast to imposed changes in the diurnal and synoptic variability of soil moisture in 1988 and 1993. High-frequency variability of soil moisture increases (decreases) precipitation in the 1988 drought (1993 flood) year in the central and southern-tier states, except along the Gulf Coast, but causes smaller changes in precipitation along the northern-tier states. The diurnal variability and synoptic variability of soil moisture produce similar patterns of precipitation change, indicating the importance of the diurnal cycle of land surface process. The increase (decrease) in precipitation is generally accompanied by a decrease (increase) in surface and lower-tropospheric temperatures, and the changes in precipitation and temperature are attributed to both the local effect of evaporation feedback and the remote influence of large-scale water vapor transport. The precipitation increase and temperature decrease in 1988 are accompanied by an increase in local evaporation and, more importantly, by an increase in the large-scale water vapor convergence into the Midwest and Southeast. Analogous but opposite-sign behavior occurs in 1993 (compared to 1988) in changes in precipitation, temperature, soil moisture, evaporation, and large-scale water vapor transport. Results also indicate that, in regions where the model simulates the diurnal cycle of soil moisture reasonably well, including this diurnal cycle in the simulations improves model performance. However, no notable improvement in model precipitation can be found in regions where the model fails to realistically simulate the diurnal variability of soil moisture.


2008 ◽  
Vol 65 (4) ◽  
pp. 1428-1441 ◽  
Author(s):  
Jian-Hua Qian

Abstract High-resolution observations and regional climate model simulations reveal that precipitation over the Maritime Continent is mostly concentrated over islands. Analysis of the diurnal cycles of precipitation and winds indicates that this is predominantly caused by sea-breeze convergence over islands, reinforced by mountain–valley winds and further amplified by the cumulus merger processes. Comparison of a regional climate model control simulation to a flat-island run and an all-ocean run demonstrates that the underrepresentation of islands and terrain in the Maritime Continent weakens the atmospheric disturbance associated with the diurnal cycle, and hence underestimates precipitation. The implication of these regional modeling results is that systematic errors in coarse-resolution global circulation models probably result from insufficient representation of land–sea breezes associated with the complex topography in the Maritime Continent. It is found that precipitation in the Maritime Continent, simulated by a global model, is indeed smaller than observed. The simulated upper-atmospheric velocity potential, which represents large-scale tropospheric heating, was substantially displaced eastward compared to observations. Possible approaches toward solving this problem are suggested.


2010 ◽  
Vol 67 (11) ◽  
pp. 3509-3524 ◽  
Author(s):  
Jian-Hua Qian ◽  
Andrew W. Robertson ◽  
Vincent Moron

Abstract Using a high-resolution regional climate model—the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 3 (RegCM3)—and station and satellite observations, the authors have studied the spatial heterogeneity of climate variability over Java Island, Indonesia. Besides the well-known anomalous dry conditions that characterize the dry and transition seasons during an El Niño year, analysis of regional model output reveals a wet mountainous south versus dry northern plains in precipitation anomalies associated with El Niño over Java during the peak rainy season. Modeling experiments indicate that this mountains/plains contrast is caused by the interaction of the El Niño–induced monsoonal wind anomalies and the island/mountain-induced local diurnal cycle of winds and precipitation. During the wet season of El Niño years, anomalous southeasterly winds over the Indonesian region oppose the climatological northwesterly monsoon, thus reducing the strength of the monsoon winds over Java. This weakening is found to amplify the local diurnal cycle of land–sea breezes and mountain–valley winds, producing more rainfall over the mountains, which are located closer to the southern coast than to the northern coast. Therefore, the variability of the diurnal cycle associated with this local spatial asymmetry of topography is the underlying cause for the heterogeneous pattern of wet south/dry north rainfall anomalies during El Niño years. It is further shown that the mean southeasterly wind anomalies during December–February of El Niño years result from more frequent occurrence of a quiescent monsoon weather type, during which the strengthened sea-breeze and valley-breeze convergence leads to above normal rainfall over the mountains.


2017 ◽  
Vol 130 (6) ◽  
pp. 611-633 ◽  
Author(s):  
Ahmad Fairudz Jamaluddin ◽  
Fredolin Tangang ◽  
Jing Xiang Chung ◽  
Liew Juneng ◽  
Hidetaka Sasaki ◽  
...  

2015 ◽  
Vol 3 (12) ◽  
pp. 7231-7245
Author(s):  
F. F. Hattermann ◽  
S. Huang ◽  
O. Burghoff ◽  
P. Hoffmann ◽  
Z. W. Kundzewicz

Abstract. In our first study on possible flood damages under climate change in Germany, we reported that a considerable increase in flood related losses can be expected in future, warmer, climate. However, the general significance of the study was limited by the fact that outcome of only one Global Climate Model (GCM) was used as large scale climate driver, while many studies report that GCM models are often the largest source of uncertainty in impact modeling. Here we show that a much broader set of global and regional climate model combinations as climate driver shows trends which are in line with the original results and even give a stronger increase of damages.


2019 ◽  
Author(s):  
Evelyn Jäkel ◽  
Johannes Stapf ◽  
Manfred Wendisch ◽  
Marcel Nicolaus ◽  
Wolfgang Dorn ◽  
...  

Abstract. For large scale and long term Arctic climate simulations appropriate parameterization of the surface albedo are required. Therefore, the sea ice surface (SIS) albedo parameterization of the coupled regional climate model HIRHAM–NAOSIM was examined against measurements performed during the joint ACLOUD (Arctic CLoud Observations Using airborne mea-surements during polar Day) and PASCAL (Physical feedbacks of Arctic boundary layer, Sea ice, Cloud and AerosoL) cam-paigns which were performed in May/June 2017 north of Svalbard. The SIS albedo parameterization was tested using measured quantities of the prognostic variables surface temperature and snow depth to calculate the surface albedo and the individual fractions of the ice surface subtypes (snow covered ice, bare ice, and melt ponds) derived from digital camera images taken onboard of the Polar 5/6 aircraft. Based on data gained during 12 flights, it was found that the range of parameterized SIS albedo for individual days is smaller than that of the measurements. This was attributed to the biased functional dependence of the SIS albedo parameterization on temperature. Furthermore, a temporal bias was observed with higher values compared to the modeled SIS albedo (0.88 compared to 0.84 for 29 May 2017) in the beginning of the campaign, and an opposite trend towards the end of the campaign (0.67 versus 0.83 for 25 June 2017). Furthermore, the surface type fraction parameterization was tested against the camera image product which revealed an agreement within 1 %. An adjustment of the variables, defining the parameterized SIS albedo, and additionally accounting for the cloud cover could reduce the root mean squared error from 0.14 to 0.04 for cloud free/broken cloud situations and from 0.06 to 0.05 for overcast conditions.


Sign in / Sign up

Export Citation Format

Share Document