scholarly journals U.S. Summer Precipitation and Temperature Patterns Following the Peak Phase of El Niño

2012 ◽  
Vol 25 (20) ◽  
pp. 7204-7215 ◽  
Author(s):  
Hui Wang ◽  
Arun Kumar ◽  
Wanqiu Wang ◽  
Bhaskar Jha

Abstract Evidence for spatially coherent, but different, U.S. summer precipitation and surface air temperature anomalies during the evolving phase and during the summers following the peak phase of the winter El Niño is presented. The spatial patterns during the decaying phase of El Niño are distinctive from patterns in the preceding summer when El Niño is in its evolving phase, that is, the traditional “simultaneous” composite patterns associated with El Niño. The analysis of a multimodel ensemble of global atmospheric models forced by observed sea surface temperature further confirms that the differences in the U.S. summer precipitation and surface temperature anomalies between the developing and decaying phases of El Niño are a result of the atmospheric response to tropical warm SST anomalies that are shifted eastward and are confined east of 120°W during the decaying phase of El Niño. Given the distinctive pattern, and relatively large amplitude of these anomalies during the decaying phase of El Niño, the results may have implications for the seasonal prediction of U.S. summer precipitation and temperature following winter El Niños.

2019 ◽  
Vol 32 (4) ◽  
pp. 1217-1234 ◽  
Author(s):  
Ying Dai ◽  
Benkui Tan

Previous studies have mainly focused on the influence of El Niño–Southern Oscillation (ENSO) on seasonal-mean conditions over East Asia and North America. This study, instead, proposes an ENSO pathway that influences the weather events over East Asia and North America, in which the eastern Pacific teleconnection pattern (EP) plays an important role. On the one hand, the EP pattern can induce significant surface temperature anomalies over East Asia during its development and mature stages, with the positive (negative) EPs causing colder (warmer) than normal weather events. Besides, the frequency of occurrence of EPs is significantly modulated by ENSO, with 50% of the positive EPs occurring in La Niña winters, and 47% of the negative EPs occurring in El Niño winters. As a result, in El Niño winters, more negative and fewer positive EPs tend to occur, and thus more warm and fewer cold weather events are expected in East Asia. For La Niña winters, the reverse is true. On the other hand, for the EP pattern without its canonical convection pattern (referred to as the nonconvective EP), extremely cold anomalies over the northern United States and western Canada are induced in its negative phase. Moreover, when there are positive sea surface temperature anomalies in the central equatorial Pacific, the frequency of occurrence of negative nonconvective EPs is 2.0 times greater than the climatological value, and thus an enhanced likelihood of extremely cold spells over North America may be expected.


Atmosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 342
Author(s):  
Evan Kutta ◽  
Jason Hubbart ◽  
Timothy Eichler ◽  
Anthony Lupo

The El Niño-Southern Oscillation (ENSO) is a dominant source of global climate variability. The effects of this phenomenon alter the flow of heat from tropical to polar latitudes, resulting in weather and climate anomalies that are difficult to forecast. The current work quantified two components of the vertically integrated equation for the total energy content of an atmospheric column, to show the anomalous horizontal redistribution of surface heat flux anomalies. Symmetric and asymmetric components of the vertically integrated latent and sensible heat flux divergence were quantified using ERA-Interim atmospheric reanalysis output on 30 model layers between 1979 and 2016. Results indicate that asymmetry is a fundamental component of ENSO-induced weather and climate anomalies at the global scale, challenging the common assumption that each phase of ENSO is equal and opposite. In particular, a substantial asymmetric component was identified in the relationship between ENSO and patterns of extratropical climate variability that may be proportional to differences in sea surface temperature anomalies during each phase of ENSO. This work advances our understanding of the global distributions of source and sink regions, which may improve future predictions of ENSO-induced precipitation and surface temperature anomalies. Future studies should apply these methods to advance understanding and to validate predictions of ENSO-induced weather and climate anomalies.


Sign in / Sign up

Export Citation Format

Share Document