scholarly journals Is the Interannual Variability of the Summer Asian–Pacific Oscillation Predictable?

2013 ◽  
Vol 26 (11) ◽  
pp. 3865-3876 ◽  
Author(s):  
Yanyan Huang ◽  
Huijun Wang ◽  
Ping Zhao

Abstract The summer (June–August) Asian–Pacific Oscillation (APO) measures the interannual variability of large-scale atmospheric circulation over the Asian–North Pacific Ocean sector. In this study, the authors assess the predictability of the summer APO index interannual variability and the associated atmospheric circulation anomalies using the 1959–2001 hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF), Centre National de Recherches Météorologiques (CNRM), and the Met Office (UKMO) general circulation models from the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) project. The results show that these models predict the summer APO index interannual variability well and have higher skill for the North Pacific than for the Asian upper-tropospheric temperature. Meanwhile, the observed APO-related atmospheric circulation anomalies in the South Asian high, the tropical easterly wind jet over the Asian monsoon region in the upper troposphere, the subtropical anticyclone over the North Pacific, and the summer southwest monsoon over Asia in the lower troposphere are reasonably well predicted in their spatial patterns and intensities. Compared with the observations, however, these models display low skill in predicting the long-term varying trends of the upper-tropospheric temperature over the Asian–North Pacific sector or the APO index during 1959–2001.

SOLA ◽  
2016 ◽  
Vol 12 (0) ◽  
pp. 282-286
Author(s):  
Shuhei Maeda ◽  
Yusuke Urabe ◽  
Kazuto Takemura ◽  
Tamaki Yasuda ◽  
Youichi Tanimoto

2010 ◽  
Vol 23 (14) ◽  
pp. 3835-3854 ◽  
Author(s):  
Xia Zhao ◽  
Jianping Li

Abstract The spatiotemporal characteristics of the winter-to-winter recurrence (WWR) of sea surface temperature anomalies (SSTA) in the Northern Hemisphere (NH) are comprehensively studied through lag correlation analysis. On this basis the relationships between the SSTA WWR and the WWR of the atmospheric circulation anomalies, El Niño–Southern Oscillation (ENSO), and SSTA interdecadal variability are also investigated. Results show that the SSTA WWR occurs over most parts of the North Pacific and Atlantic Oceans, but the spatiotemporal distributions of the SSTA WWR are distinctly different in these two oceans. Analyses indicate that the spatiotemporal distribution of the SSTA WWR in the North Atlantic Ocean is consistent with the spatial distribution of the seasonal cycle of its mixed layer depth (MLD), whereas that in the North Pacific Ocean, particularly the recurrence timing, cannot be fully explained by the change in the MLD between winter and summer in some regions. In addition, the atmospheric circulation anomalies also exhibit the WWR at the mid–high latitude of the NH, which is mainly located in eastern Asia, the central North Pacific, and the North Atlantic. The sea level pressure anomalies (SLPA) in the central North Pacific are essential for the occurrence of the SSTA WWR in this region. Moreover, the strongest positive correlation occurs when the SLPA lead SSTA in the central North Pacific by 1 month, which suggests that the atmospheric forcing on the ocean may play a dominant role in this region. Therefore, the “reemergence mechanism” is not the only process influencing the SSTA WWR, and the WWR of the atmospheric circulation anomalies may be one of the causes of the SSTA WWR in the central North Pacific. Finally, the occurrence of the SSTA WWR in the NH is closely related to SSTA interdecadal variability in the NH, but it is linearly independent of ENSO.


2013 ◽  
Vol 26 (15) ◽  
pp. 5523-5536 ◽  
Author(s):  
Bingyi Wu ◽  
Renhe Zhang ◽  
Rosanne D'Arrigo ◽  
Jingzhi Su

Abstract Using NCEP–NCAR reanalysis and Japanese 25-yr Reanalysis (JRA-25) data, this paper investigates the association between winter sea ice concentration (SIC) in Baffin Bay southward to the eastern coast of Newfoundland, and the ensuing summer atmospheric circulation over the mid- to high latitudes of Eurasia. It is found that winter SIC anomalies are significantly correlated with the ensuing summer 500-hPa height anomalies that dynamically correspond to the Eurasian pattern of 850-hPa wind variability and significantly influence summer rainfall variability over northern Eurasia. Spring atmospheric circulation anomalies south of Newfoundland, associated with persistent winter–spring SIC and a horseshoe-like pattern of sea surface temperature (SST) anomalies in the North Atlantic, act as a bridge linking winter SIC and the ensuing summer atmospheric circulation anomalies over northern Eurasia. Indeed, this study only reveals the association based on observations and simple simulation experiments with SIC forcing. The more precise mechanism for this linkage needs to be addressed in future work using numerical simulations with SIC and SST as the external forcings. The results herein have the following implication: Winter SIC west of Greenland is a possible precursor for summer atmospheric circulation and rainfall anomalies over northern Eurasia.


2017 ◽  
Vol 30 (24) ◽  
pp. 9965-9977 ◽  
Author(s):  
Ge Liu ◽  
Ping Zhao ◽  
Junming Chen

The summer (June–August) Asian–Pacific Oscillation (APO), a large-scale atmospheric teleconnection pattern, is closely associated with climate anomalies over the Northern Hemisphere. Using the NOAA/CIRES twentieth-century reanalysis, the ECMWF twentieth-century atmospheric reanalysis, and the NCEP reanalysis, this study investigates the variability of the summer APO on the interannual time scale and its relationship with the thermal condition over the Tibetan Plateau (TP). The results show that the interannual variability of the APO is steadily related to the summer TP surface air temperature during the last 100 years. Observation and simulation further show that a positive heating anomaly over the TP can increase the upper-tropospheric temperature and upward motion over Asia. This anomalous upward flow moves northward in the upper troposphere, and then turns and moves eastward, before finally descending over the mid- to high latitudes of the central-eastern North Pacific, concurrently accompanied by anomalous upward motion over the lower latitudes of the central-eastern North Pacific. The anomalous downward and upward motions over the central-eastern North Pacific reduce the in situ mid- and upper-tropospheric temperature, mainly through modulating condensation latent heat from precipitation and/or dry adiabatic heat, which ultimately leads to the interannual variability of the summer APO. In this process, the zonal vertical circulation over the extratropical Asian–North Pacific sector plays an important bridging role.


2021 ◽  
pp. 1-53
Author(s):  
Hua Li ◽  
Shengping He ◽  
Ke Fan ◽  
Yong Liu ◽  
Xing Yuan

AbstractThe Meiyu withdrawal date (MWD) is a crucial indicator of flood/drought conditions over East Asia. It is characterized by a strong interannual variability, but its underlying mechanism remains unknown. We investigated the possible effects of the winter sea surface temperature (SST) in the North Pacific Ocean on the MWD on interannual to interdecadal timescales. Both our observations and model results suggest that the winter SST anomalies associated with the MWD are mainly contributed by a combination of the first two leading modes of the winter SST in the North Pacific, which have a horseshoe shape (the NPSST). The statistical results indicate that the intimate linkage between the NPSST and the MWD has intensified since the early 1990s. During the time period 1990–2016, the NPSST-related SST anomalies persisted from winter to the following seasons and affected the SST over the tropical Pacific in July. Subsequently, the SST anomalies throughout the North Pacific strengthened the southward migration of the East Asian jet stream (EAJS) and the southward and westward replacement of the western North Pacific subtropical high (WPSH), leading to an increase in Meiyu rainfall from July 1 to 20. More convincingly, the anomalous EAJS and WPSH induced by the SST anomalies can be reproduced well by numerical simulations. By contrast, the influence of the NPSST on the EASJ and WPSH were not clear between 1961 and 1985. This study further illustrates that the enhanced interannual variability of the NPSST may be attributed to the more persistent SST anomalies during the time period 1990–2016.


Sign in / Sign up

Export Citation Format

Share Document