Possible Effect of the Thermal Condition of the Tibetan Plateau on the Interannual Variability of the Summer Asian–Pacific Oscillation

2017 ◽  
Vol 30 (24) ◽  
pp. 9965-9977 ◽  
Author(s):  
Ge Liu ◽  
Ping Zhao ◽  
Junming Chen

The summer (June–August) Asian–Pacific Oscillation (APO), a large-scale atmospheric teleconnection pattern, is closely associated with climate anomalies over the Northern Hemisphere. Using the NOAA/CIRES twentieth-century reanalysis, the ECMWF twentieth-century atmospheric reanalysis, and the NCEP reanalysis, this study investigates the variability of the summer APO on the interannual time scale and its relationship with the thermal condition over the Tibetan Plateau (TP). The results show that the interannual variability of the APO is steadily related to the summer TP surface air temperature during the last 100 years. Observation and simulation further show that a positive heating anomaly over the TP can increase the upper-tropospheric temperature and upward motion over Asia. This anomalous upward flow moves northward in the upper troposphere, and then turns and moves eastward, before finally descending over the mid- to high latitudes of the central-eastern North Pacific, concurrently accompanied by anomalous upward motion over the lower latitudes of the central-eastern North Pacific. The anomalous downward and upward motions over the central-eastern North Pacific reduce the in situ mid- and upper-tropospheric temperature, mainly through modulating condensation latent heat from precipitation and/or dry adiabatic heat, which ultimately leads to the interannual variability of the summer APO. In this process, the zonal vertical circulation over the extratropical Asian–North Pacific sector plays an important bridging role.

2019 ◽  
Vol 32 (11) ◽  
pp. 3109-3130 ◽  
Author(s):  
Ruizao Sun ◽  
Anmin Duan ◽  
Lilan Chen ◽  
Yanjie Li ◽  
Zhiang Xie ◽  
...  

Abstract By using multisourced data and two sets of sensitivity runs from the coupled general circulation model CESM1.2.0, we investigated the effects of the spring [March, April, and May (MAM)] surface sensible heating over the Tibetan Plateau (SHTP) on the interannual variability of the North Pacific Ocean sea surface temperature (SST) and mixed layer. The results indicated that an above-normal MAM SHTP can generate a Rossby wave downstream and form an anomalous equivalent barotropic anticyclone over the North Pacific, inducing anticyclonic wind stress anomalies. As a result of Ekman transport and Ekman pumping, sea currents converge near 40°N, accompanied by weak downwelling motion. The mixed layer heat budget diagnosis indicates that the net heat fluxes, together with meridional advection anomalies, contributed significantly to changes in the mixed layer temperature (MLT). As a result, the SST anomalies (SSTAs) and MLT anomalies both present a horseshoelike pattern. In addition, the significant warm SSTAs show a maximum in the late spring, but the significant warm MLT anomalies centered under the sea surface (25-m depth) could be sustained until summer, acting like a signal storage for the anomalous spring SHTP. Moreover, the midlatitude ocean–atmosphere interaction provides a positive feedback on the development of the anomalous anticyclone over the North Pacific, since the SSTA pattern could strengthen the oceanic front and induce more active transient eddy activities. The eddy vorticity forcing that is dominant among the total atmospheric forcings tends to produce an equivalent barotropic atmospheric high pressure, which in turn intensifies the initial anomalous anticyclone.


2013 ◽  
Vol 26 (11) ◽  
pp. 3865-3876 ◽  
Author(s):  
Yanyan Huang ◽  
Huijun Wang ◽  
Ping Zhao

Abstract The summer (June–August) Asian–Pacific Oscillation (APO) measures the interannual variability of large-scale atmospheric circulation over the Asian–North Pacific Ocean sector. In this study, the authors assess the predictability of the summer APO index interannual variability and the associated atmospheric circulation anomalies using the 1959–2001 hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF), Centre National de Recherches Météorologiques (CNRM), and the Met Office (UKMO) general circulation models from the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) project. The results show that these models predict the summer APO index interannual variability well and have higher skill for the North Pacific than for the Asian upper-tropospheric temperature. Meanwhile, the observed APO-related atmospheric circulation anomalies in the South Asian high, the tropical easterly wind jet over the Asian monsoon region in the upper troposphere, the subtropical anticyclone over the North Pacific, and the summer southwest monsoon over Asia in the lower troposphere are reasonably well predicted in their spatial patterns and intensities. Compared with the observations, however, these models display low skill in predicting the long-term varying trends of the upper-tropospheric temperature over the Asian–North Pacific sector or the APO index during 1959–2001.


2021 ◽  
Author(s):  
Yanghang Ren ◽  
Kun Yang ◽  
Han Wang

<p>As region that is highly sensitive to global climate change, the Tibetan Plateau (TP) experiences an intra-seasonal soil water deficient due to the reduced precipitation during the South Asia monsoon (SAM) break. Few studies have investigated the impact of the SAM break on TP ecological processes, although a number of studies have explored the effects of inter-annual and decadal climate variability. In this study, the response of vegetation activity to the SAM break was investigated. The data used are: (1) soil moisture from in situ, satellite remote sensing and data assimilation; and (2) the Normalized Difference Vegetation Index (NDVI) and Solar-Induced chlorophyll Fluorescence (SIF). We found that in the region impacted by SAM break, which is distributed in the central-eastern part of TP, photosynthesis become more active during the SAM break. And temporal variability in the photosynthesis of this region is controlled mainly by solar radiation variability and has little sensitivity to soil moisture. We adopted a diagnostic process-based modeling approach to examine the causes of enhanced plant activity during the SAM break on the central-eastern TP. Our analysis indicates that active photosynthetic behavior in the reduced precipitation is stimulated by increases in solar radiation absorbed and temperature. This study highlights the importance of sub-seasonal climate variability for characterizing the relationship between vegetation and climate.</p>


2019 ◽  
Vol 124 (22) ◽  
pp. 11961-11975 ◽  
Author(s):  
Xingwen Jiang ◽  
Tuantuan Zhang ◽  
Chi‐Yung Tam ◽  
Junwen Chen ◽  
Ngar‐Cheung Lau ◽  
...  

2017 ◽  
Vol 30 (8) ◽  
pp. 3009-3024 ◽  
Author(s):  
Liguang Wu ◽  
Xiaofang Feng ◽  
Mei Liang

The South Asia high (SAH) is a prominent circulation system of the Asian summer monsoon, exerting profound influences on the weather and climate in China and surrounding regions. Its formation and maintenance is closely associated with strong summertime continental heating in the form of surface sensible heat flux and the latent heat release in connection with the Asian monsoon. In this study, the possible response of the South Asian high intensity to the thermal condition change in the Tibetan Plateau is examined with four modern reanalysis datasets, including the Modern-Era Retrospective Analysis for Research and Applications (MERRA), MERRA version 2 (MERRA-2), the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim), and the Japanese 55-year Reanalysis (JRA-55). Despite the surface air warming in the four modern reanalysis datasets, reduced surface wind speed in three of the reanalysis datasets, and decreased surface sensible heat flux in the MERRA-2 dataset, there is no statistically significant trend in the SAH intensity over the period 1979–2015. One of the possible reasons is that the response of the upper-level circulation to the thermal condition change of the Tibetan Plateau occurs mainly in the 200-hPa subtropical westerly jet stream, which is located far away from the center of the South Asian high. Thus the South Asian high intensity is not particularly sensitive to the thermal condition change of the Tibetan Plateau, while the center of the South Asian high intensity over the plateau exhibits a northward trend over the period.


2021 ◽  
Author(s):  
Jun-Hyeok Son ◽  
Kyong-Hwan Seo

Abstract From spring to summer, the East Asian summer monsoon (EASM) rainband migrates northwestward. During summer, East Asian countries experience extensive precipitation due to the EASM rainband, but the springtime monsoon rainband lies over the Pacific. The seasonal evolution of the EASM rainband is influenced by the mechanical effect of the Tibetan Plateau, and seasonal changes in the westerly wind speeds impinging on the Tibetan Plateau are a key driver of this process. In this study, using interannual variability of the upstream zonal wind speed, the dynamical mechanism for the interannual variations of the EASM precipitation is revealed based on the topographically forced stationary Rossby wave theory. The dynamical mechanism regulating interannual variability in the EASM rainband is essentially the same mechanism that drives the seasonal evolution of the climatological EASM rainband. If the westerly winds impinging on the Tibetan Plateau are stronger (weaker) than average, then the EASM rainband shifts eastward (westward). Large variations in the upstream westerly wind during May induced considerable interannual variation in the zonal location of the rainband (up to a 20–30º shift). The westerly wind speed exhibited less variations in June and July, resulting in a smaller zonal shift of approximately 10º.


2018 ◽  
pp. 151-168
Author(s):  
Anna Sawerthal ◽  

In the first half of the twentieth century, most Tibetans believed the world to be flat. Yet, a debate had started to develop amongst an intellectual elite on whether the world might be round. At that time, a scholastic paradigm trending in Europe was entering the Tibetan plateau, which focused on a measurable, visible and tangible reality. In 1938 the Tibetan intellectual enfant terrible Dge ‘dun chos ‘phel published the famous article “The Round and Spherical World” in one of the first Tibetan-language newspapers, the Yul phyogs so so’i gsar ‘gyur me long (The Tibet Mirror, 1925–1963). For the said piece, Dge ‘dun chos ‘phel is often remembered as being the first Tibetan scholar publishing on the “round world” for Tibetans. Mostly overlooked has been the fact that his article is embedded in a media discourse which had started much earlier. Studying early Tibetan-language newspapers reveals that his article was only one contribution on the “round world” amongst many. The following study shows how early Tibetan-language newspapers were at the forefront of disseminating this knowledge into the Tibetan world. Studying articles on the shape of the world in the La dwags kyi ag bar (“Ladakh Newspaper”, 1904–1910, Kye lang ag bar (“Kyelang Newspaper”, 1926–1935), La dwags pho nya (“Ladakh Messenger”, 1937–1950s), and The Tibet Mirror, allows us to trace how modern knowledge entered the Tibetan cultural sphere. It further presents an opportunity to sketch out an early Tibetan-language public, as particular flows of information between these newspapers can be observed.


Sign in / Sign up

Export Citation Format

Share Document