scholarly journals Projections of a Wetter Sahel in the Twenty-First Century from Global and Regional Models

2013 ◽  
Vol 26 (13) ◽  
pp. 4664-4687 ◽  
Author(s):  
Edward K. Vizy ◽  
Kerry H. Cook ◽  
Julien Crétat ◽  
Naresh Neupane

Abstract Confident regional-scale climate change predictions for the Sahel are needed to support adaptation planning. State-of-the-art regional climate model (RCM) simulations at 90- and 30-km resolutions are run and analyzed along with output from five coupled atmosphere–ocean GCMs (AOGCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to predict how the Sahel summer surface temperature, precipitation, and surface moisture are likely to change at the mid- and late-twenty-first century due to increased atmospheric CO2 concentrations under the representative concentration pathway 8.5 (RCP8.5) emission scenario and evaluate confidence in such projections. Future lateral boundary conditions are derived from CMIP5 AOGCMs. It is shown that the regional climate model can realistically simulate the current summer evolution of the West African monsoon climate including the onset and demise of the Sahel wet season, a necessary but not sufficient condition for confident prediction. RCM and AOGCM projections indicate the likelihood for increased surface air temperatures over this century, with Sahara and Sahel temperature increases of 2–3.5 K by midcentury, and 3–6 K by late century. Summer rainfall and surface moisture are also projected to increase over most of the Sahel. This is primarily associated with an increase in rainfall intensity and not a lengthening of the wet season. Pinpointing exactly when the rainfall and surface moisture increase will first commence and by exactly what magnitude is less certain as these predictions appear to be model dependent. Models that simulate stronger warming over the Sahara are associated with larger and earlier rainfall increases over the Sahel due to an intensification of the low-level West African westerly jet, and vice versa.

2015 ◽  
Vol 28 (4) ◽  
pp. 1661-1684 ◽  
Author(s):  
Michael Notaro ◽  
Val Bennington ◽  
Steve Vavrus

Abstract Projected changes in lake-effect snowfall by the mid- and late twenty-first century are explored for the Laurentian Great Lakes basin. Simulations from two state-of-the-art global climate models within phase 5 of the Coupled Model Intercomparison Project (CMIP5) are dynamically downscaled according to the representative concentration pathway 8.5 (RCP8.5). The downscaling is performed using the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 4 (RegCM4) with 25-km grid spacing, interactively coupled to a one-dimensional lake model. Both downscaled models produce atmospheric warming and increased cold-season precipitation. The Great Lakes’ ice cover is projected to dramatically decline and, by the end of the century, become confined to the northern shallow lakeshores during mid-to-late winter. Projected reductions in ice cover and greater dynamically induced wind fetch lead to enhanced lake evaporation and resulting total lake-effect precipitation, although with increased rainfall at the expense of snowfall. A general reduction in the frequency of heavy lake-effect snowstorms is simulated during the twenty-first century, except with increases around Lake Superior by the midcentury when local air temperatures still remain low enough for wintertime precipitation to largely fall in the form of snow. Despite the significant progress made here in elucidating the potential future changes in lake-effect snowstorms across the Great Lakes basin, further research is still needed to downscale a larger ensemble of CMIP5 model simulations, ideally using a higher-resolution, nonhydrostatic regional climate model coupled to a three-dimensional lake model.


Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 23 ◽  
Author(s):  
Ibrahima Diba ◽  
Moctar Camara ◽  
Arona Diedhiou

This study investigates the changes in West African monsoon features during warm years using the Regional Climate Model version 4.5 (RegCM4.5). The analysis uses 30 years of datasets of rainfall, surface temperature and wind parameters (from 1980 to 2009). We performed a simulation at a spatial resolution of 50 km with the RegCM4.5 model driven by ERA-Interim reanalysis. The rainfall amount is weaker over the Sahel (western and central) and the Guinea region for the warmest years compared to the coldest ones. The analysis of heat fluxes show that the sensible (latent) heat flux is stronger (weaker) during the warmest (coldest) years. When considering the rainfall events, there is a decrease of the number of rainy days over the Guinea Coast (in the South of Cote d’Ivoire, of Ghana and of Benin) and the western and eastern Sahel during warm years. The maximum length of consecutive wet days decreases over the western and eastern Sahel, while the consecutive dry days increase mainly over the Sahel band during the warm years. The percentage of very warm days and warm nights increase mainly over the Sahel domain and the Guinea region. The model also simulates an increase of the warm spell duration index in the whole Sahel domain and over the Guinea Coast in warm years. The analysis of the wind dynamic exhibits during warm years a weakening of the monsoon flow in the lower levels, a strengthening in the magnitude of the African Easterly Jet (AEJ) in the mid-troposphere and a slight increase of the Tropical Easterly Jet (TEJ) in the upper levels of the atmosphere during warm years.


2019 ◽  
Vol 101 ◽  
pp. 03004
Author(s):  
Rohit Srivastava ◽  
Ruchita Shah

Global warming is an increase in average global temperature of the earth which lead to climate change. Heterogeneity in the earth-atmosphere system becomes difficult to capture at low resolution (1°x1°) by satellite. Such features may be captured by using high resolution model such as regional climate model (0.5°x 0.5°). This type of study is quite important for a monsoon dominated country like India where Indo-Gangetic Plains (IGP) faces highest heterogeneity due to its geographic location. Present study compares high resolution model features with satellite data over IGP for monsoon season during a normal rainfall year 2010 to understand the actual performance of model. Almost whole IGP simulates relative humidity (RH) with wide range (~50-100%), whereas satellite shows it with narrow range (~60-80%) during September, 2010. Thus model is able to pick the features which were missed by satellite. Hence further model simulation extends over India and adjoining oceanic regions which simulates data of southwest monsoon with high (~70-100%) RH, high (~0.4-0.7) cloud fraction (CF) and low (~80-200 W/m2) outgoing longwave radiation (OLR) over Arabian Sea during June, 2010. Such type of study can be useful to understand heterogeneity at regional scale with the help of high resolution model generated data.


2010 ◽  
Vol 11 (2) ◽  
pp. 467-481 ◽  
Author(s):  
Bart J. J. M. van den Hurk ◽  
Erik van Meijgaard

Abstract Land–atmosphere interaction at climatological time scales in a large area that includes the West African Sahel has been explicitly explored in a regional climate model (RegCM) simulation using a range of diagnostics. First, areas and seasons of strong land–atmosphere interaction were diagnosed from the requirement of a combined significant correlation between soil moisture, evaporation, and the recycling ratio. The northern edge of the West African monsoon area during June–August (JJA) and an area just north of the equator (Central African Republic) during March–May (MAM) were identified. Further analysis in these regions focused on the seasonal cycle of the lifting condensation level (LCL) and the convective triggering potential (CTP), and the sensitivity of CTP and near-surface dewpoint depressions HIlow to anomalous soil moisture. From these analyses, it is apparent that atmospheric mechanisms impose a strong constraint on the effect of soil moisture on the regional hydrological cycle.


2017 ◽  
Vol 12 (15) ◽  
pp. 142-154
Author(s):  
Benjamin KOUASSI K. ◽  
DIAWARA Adama ◽  
Yves KOUADIO K. ◽  
YOROBA Fidele ◽  
TOUALY Elisee

Sign in / Sign up

Export Citation Format

Share Document