scholarly journals Global Hydrological Cycle Response to Rapid and Slow Global Warming

2013 ◽  
Vol 26 (22) ◽  
pp. 8781-8786 ◽  
Author(s):  
Larissa Back ◽  
Karen Russ ◽  
Zhengyu Liu ◽  
Kuniaki Inoue ◽  
Jiaxu Zhang ◽  
...  

Abstract This study analyzes the response of global water vapor to global warming in a series of fully coupled climate model simulations. The authors find that a roughly 7% K−1 rate of increase of water vapor with global surface temperature is robust only for rapid anthropogenic-like climate change. For slower warming that occurred naturally in the past, the Southern Ocean has time to equilibrate, producing a different pattern of surface warming, so that water vapor increases at only 4.2% K−1. This lower rate of increase of water vapor with warming is not due to relative humidity changes or differences in mean lower-tropospheric temperature. A temperature of over 80°C would be required in the Clausius–Clapeyron relationship to match the 4.2% K−1 rate of increase. Instead, the low rate of increase is due to spatially heterogeneous warming. During slower global warming, there is enhanced warming at southern high latitudes, and hence less warming in the tropics per kelvin of global surface temperature increase. This leads to a smaller global water vapor increase, because most of the atmospheric water vapor is in the tropics. A formula is proposed that applies to general warming scenarios. This study also examines the response of global-mean precipitation and the meridional profile of precipitation minus evaporation and compares the latter to thermodynamic scalings. It is found that global-mean precipitation changes are remarkably robust between rapid and slow warming. Thermodynamic scalings for the rapid- and slow-warming zonal-mean precipitation are similar, but the precipitation changes are significantly different, suggesting that circulation changes are important in driving these differences.

Author(s):  
Wenbin Sun ◽  
Qingxiang Li ◽  
Boyin Huang ◽  
Jiayi Cheng ◽  
Zhaoyang Song ◽  
...  

AbstractBased on C-LSAT2.0, using high- and low-frequency components reconstruction methods, combined with observation constraint masking, a reconstructed C-LSAT2.0 with 756 ensemble members from the 1850s to 2018 has been developed. These ensemble versions have been merged with the ERSSTv5 ensemble dataset, and an upgraded version of the CMST-Interim dataset with 5° × 5° resolution has been developed. The CMST-Interim dataset has significantly improved the coverage rate of global surface temperature data. After reconstruction, the data coverage before 1950 increased from 78%–81% of the original CMST to 81%–89%. The total coverage after 1955 reached about 93%, including more than 98% in the Northern Hemisphere and 81%–89% in the Southern Hemisphere. Through the reconstruction ensemble experiments with different parameters, a good basis is provided for more systematic uncertainty assessment of C-LSAT2.0 and CMST-Interim. In comparison with the original CMST, the global mean surface temperatures are estimated to be cooler in the second half of 19th century and warmer during the 21st century, which shows that the global warming trend is further amplified. The global warming trends are updated from 0.085 ± 0.004°C (10 yr)−1 and 0.128 ± 0.006°C (10 yr)−1 to 0.089 ± 0.004°C (10 yr)−1 and 0.137 ± 0.007°C (10 yr)−1, respectively, since the start and the second half of 20th century.


2013 ◽  
Vol 26 (15) ◽  
pp. 5578-5593 ◽  
Author(s):  
Liping Zhang ◽  
Lixin Wu ◽  
Bolan Gan

Abstract The modes and mechanisms of the annual water vapor variations over the twentieth century are investigated based on a newly developed twentieth-century atmospheric reanalysis product. It is found that the leading modes of global water vapor variations over the twentieth century are controlled by global warming, the Atlantic multidecadal oscillation (AMO), and ENSO. On the global scale, the variations in water vapor synchronize with the sea surface temperature, which can be explained by the simple thermal Clausius–Clapeyron theory under conditions of constant relative humidity. However, on regional scales, the spatial patterns of water vapor variations associated with global warming, AMO, and ENSO are largely attributed to the atmospheric circulation dynamics, particularly the planetary divergent circulation change induced by the sea surface temperature changes. In the middle and high latitudes, the transient eddy fluxes and thermodynamics also play significant roles.


2021 ◽  
Author(s):  
Philip G. Sansom ◽  
Donald Cummins ◽  
Stefan Siegert ◽  
David B Stephenson

Abstract Quantifying the risk of global warming exceeding critical targets such as 2.0 ◦ C requires reliable projections of uncertainty as well as best estimates of Global Mean Surface Temperature (GMST). However, uncertainty bands on GMST projections are often calculated heuristically and have several potential shortcomings. In particular, the uncertainty bands shown in IPCC plume projections of GMST are based on the distribution of GMST anomalies from climate model runs and so are strongly determined by model characteristics with little influence from observations of the real-world. Physically motivated time-series approaches are proposed based on fitting energy balance models (EBMs) to climate model outputs and observations in order to constrain future projections. It is shown that EBMs fitted to one forcing scenario will not produce reliable projections when different forcing scenarios are applied. The errors in the EBM projections can be interpreted as arising due to a discrepancy in the effective forcing felt by the model. A simple time-series approach to correcting the projections is proposed based on learning the evolution of the forcing discrepancy so that it can be projected into the future. This approach gives reliable projections of GMST when tested in a perfect model setting. When applied to observations this leads to projected warming of 2.2 ◦ C (1.7 ◦ C to 2.9 ◦ C) in 2100 compared to pre-industrial conditions, 0.4 ◦ C lower than a comparable IPCC anomaly estimate. The probability of staying below the critical 2.0 ◦ C warming target in 2100 more than doubles to 0.28 compared to only 0.11 from a comparably IPCC estimate.


Eos ◽  
2019 ◽  
Vol 100 ◽  
Author(s):  
Huai-Min Zhang ◽  
Jay Lawrimore ◽  
Boyin Huang ◽  
Matthew Menne ◽  
Xungang Yin ◽  
...  

The latest version of NOAA’s Global Surface Temperature Dataset improves coverage over land and sea and improves the treatment of historical changes in observational practices.


Author(s):  
Thomas C. Peterson ◽  
Alan N. Basist ◽  
Claude N. Williams ◽  
Norman C. Grody

2016 ◽  
Vol 43 (16) ◽  
pp. 8662-8669 ◽  
Author(s):  
Cheryl E. Peyser ◽  
Jianjun Yin ◽  
Felix W. Landerer ◽  
Julia E. Cole

Sign in / Sign up

Export Citation Format

Share Document