scholarly journals Modes and Mechanisms of Global Water Vapor Variability over the Twentieth Century

2013 ◽  
Vol 26 (15) ◽  
pp. 5578-5593 ◽  
Author(s):  
Liping Zhang ◽  
Lixin Wu ◽  
Bolan Gan

Abstract The modes and mechanisms of the annual water vapor variations over the twentieth century are investigated based on a newly developed twentieth-century atmospheric reanalysis product. It is found that the leading modes of global water vapor variations over the twentieth century are controlled by global warming, the Atlantic multidecadal oscillation (AMO), and ENSO. On the global scale, the variations in water vapor synchronize with the sea surface temperature, which can be explained by the simple thermal Clausius–Clapeyron theory under conditions of constant relative humidity. However, on regional scales, the spatial patterns of water vapor variations associated with global warming, AMO, and ENSO are largely attributed to the atmospheric circulation dynamics, particularly the planetary divergent circulation change induced by the sea surface temperature changes. In the middle and high latitudes, the transient eddy fluxes and thermodynamics also play significant roles.

1994 ◽  
Vol 99 (C3) ◽  
pp. 5219 ◽  
Author(s):  
William J. Emery ◽  
Yunyue Yu ◽  
Gary A. Wick ◽  
Peter Schluessel ◽  
Richard W. Reynolds

2016 ◽  
Vol 9 (4) ◽  
pp. 452 ◽  
Author(s):  
Saeed Samadianfard ◽  
Reza Delirhasannia ◽  
Masoud Torabi Azad ◽  
Sima Samadianfard ◽  
Mehrdad Jeihouni

2019 ◽  
Vol 32 (22) ◽  
pp. 7675-7695 ◽  
Author(s):  
Jie Jiang ◽  
Tianjun Zhou

Abstract Multidecadal variations in the global land monsoon were observed during the twentieth century, with an overall increasing trend from 1901 to 1955 that was followed by a decreasing trend up to 1990, but the mechanisms governing the above changes remain inconclusive. Based on the outputs of two atmospheric general circulation models (AGCMs) forced by historical sea surface temperature (SST) covering the twentieth century, supplemented with AGCM simulations forced by idealized SST anomalies representing different conditions of the North Atlantic and tropical Pacific, evidence shows that the observed changes can be partly reproduced, particularly over the Northern Hemisphere summer monsoon (NHSM) domain, demonstrating the modulation of decadal SST changes on the long-term variations in monsoon precipitation. Moisture budget analysis is performed to understand the interdecadal changes in monsoon precipitation, and the dynamic term associated with atmospheric circulation changes is found to be prominent, while the contribution of the thermodynamic term associated with humidity changes can lead to coincident wetting over the NHSM domain. The increase (decrease) in NHSM land precipitation during 1901–55 (1956–90) is associated with the strengthening (weakening) of NHSM circulation and Walker circulation. The multidecadal scale changes in atmospheric circulation are driven by SST anomalies over the North Atlantic and the Pacific. A warmer North Atlantic together with a colder eastern tropical Pacific and a warmer western subtropical Pacific can lead to a strengthened meridional gradient in mid-to-upper-tropospheric thickness and strengthened trade winds, which transport more water vapor into monsoon regions, leading to an increase in monsoon precipitation.


2017 ◽  
Vol 30 (18) ◽  
pp. 7317-7337 ◽  
Author(s):  
A. Bellucci ◽  
A. Mariotti ◽  
S. Gualdi

Abstract Results from a study inspecting the origins of multidecadal variability in the North Atlantic sea surface temperature (NASST) are presented. The authors target in particular the 1940–75 “warm-to-cold” transition, an event that is generally framed in the context of the longer-term Atlantic multidecadal variability (AMV) cycle, in turn associated with the Atlantic meridional overturning circulation (AMOC) internal variability. Here the authors examine the ability of uninitialized, historical integrations from the phase 5 of the Coupled Model Intercomparison Project (CMIP5) archive to retrospectively reproduce this specific episode of twentieth-century climatic history, under a hierarchy of forcing conditions. For this purpose, both standard and so-called historical Misc CMIP5 simulations of the historical climate (combining selected natural and anthropogenic forcings) are exploited. Based on this multimodel analysis, evidence is found for a significant influence of anthropogenic agents on multidecadal sea surface temperature (SST) fluctuations across the Atlantic sector, suggesting that anthropogenic aerosols and greenhouse gases might have played a key role in the 1940–75 North Atlantic cooling. However, the diagnosed forced response in CMIP5 models appears to be affected by a large uncertainty, with only a limited subset of models displaying significant skill in reproducing the mid-twentieth-century NASST cooling. Such uncertainty originates from the existence of well-defined behavioral clusters within the analyzed CMIP5 ensembles, with the bulk of the models splitting into two main clusters. Such a strong polarization calls for some caution when using a multimodel ensemble mean in climate model analyses, as averaging across fairly distinct model populations may result, through mutual cancellation, in a rather artificial description of the actual multimodel ensemble behavior. A potentially important role for both anthropogenic aerosols and greenhouse gases with regard to the observed North Atlantic multidecadal variability has clear implications for decadal predictability and predictions. The uncertainty associated with alternative aerosol and greenhouse gas emission scenarios should be duly accounted for in designing a common protocol for coordinated decadal forecast experiments.


Sign in / Sign up

Export Citation Format

Share Document