scholarly journals Development of a Dynamics-Based Statistical Prediction Model for the Changma Onset

2015 ◽  
Vol 28 (17) ◽  
pp. 6647-6666 ◽  
Author(s):  
Hae-li Park ◽  
Kyong-Hwan Seo ◽  
Jun-Hyeok Son

Abstract The timing of the changma onset has high impacts on the Korean Peninsula, yet its seasonal prediction remains a great challenge because the changma undergoes various influences from the tropics, subtropics, and midlatitudes. In this study, a dynamics-based statistical prediction model for the changma onset is proposed. This model utilizes three predictors of slowly varying sea surface temperature anomalies (SSTAs) over the northern tropical central Pacific, the North Atlantic, and the North Pacific occurring in the preceding spring season. SSTAs associated with each predictor persist until June and have an effect on the changma onset by inducing an anticyclonic anomaly to the southeast of the Korean Peninsula earlier than the climatological changma onset date. The persisting negative SSTAs over the northern tropical central Pacific and accompanying anomalous trade winds induce enhanced convection over the far-western tropical Pacific; in turn, these induce a cyclonic anomaly over the South China Sea and an anticyclonic anomaly southeast of the Korean Peninsula. The diabatic heating and cooling tendency related to the North Atlantic dipolar SSTAs induces downstream Rossby wave propagation in the upper troposphere, developing a barotropic anticyclonic anomaly to the south of the Korean Peninsula. A westerly wind anomaly at around 45°N resulting from the developing positive SSTAs over the North Pacific directly reduces the strength of the Okhotsk high and gives rise to an anticyclonic anomaly southeast of the Korean Peninsula. With the dynamics-based statistical prediction model, it is demonstrated that the changma onset has considerable predictability of r = 0.73 for the period from 1982 to 2014.

2020 ◽  
Author(s):  
Chen Schwartz ◽  
Chaim Garfinkel

<p>The representation of upward and downward stratosphere-troposphere coupling and its influence on the teleconnections of the Madden Julian oscillation (MJO) to the European sector is examined in five subseasonal-to-seasonal (S2S) models. We show that while the models simulate a realistic stratospheric response to transient anomalies in troposphere, they overestimate the downward coupling. The models with a better stratospheric resolution capture a more realistic stratospheric response to the MJO, particularly after the first week of the integration. However, in all models examined here the connection between the MJO and vortex variability is weaker than that observed. Finally, we focus on the MJO-SSW teleconnection in the NCEP model, and specifically initializations during the MJO phase with enhanced convection in the west/central pacific (i.e. 6 and 7) that preceded observed SSW. The integrations that simulated a SSW (as observed) can be distinguished from those that failed to simulate a SSW by the realism of the Pacific response to MJO 6/7, with only the simulations that successfully simulate a SSW capturing the North Pacific low. Furthermore, only the simulations that capture the SSW, subsequently simulate a realistic surface response over the North Atlantic and Europe.</p>


2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2014 ◽  
Vol 29 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Elizabeth A. Ritchie ◽  
Kimberly M. Wood ◽  
Oscar G. Rodríguez-Herrera ◽  
Miguel F. Piñeros ◽  
J. Scott Tyo

Abstract The deviation-angle variance technique (DAV-T), which was introduced in the North Atlantic basin for tropical cyclone (TC) intensity estimation, is adapted for use in the North Pacific Ocean using the “best-track center” application of the DAV. The adaptations include changes in preprocessing for different data sources [Geostationary Operational Environmental Satellite-East (GOES-E) in the Atlantic, stitched GOES-E–Geostationary Operational Environmental Satellite-West (GOES-W) in the eastern North Pacific, and the Multifunctional Transport Satellite (MTSAT) in the western North Pacific], and retraining the algorithm parameters for different basins. Over the 2007–11 period, DAV-T intensity estimation in the western North Pacific results in a root-mean-square intensity error (RMSE, as measured by the maximum sustained surface winds) of 14.3 kt (1 kt ≈ 0.51 m s−1) when compared to the Joint Typhoon Warning Center best track, utilizing all TCs to train and test the algorithm. The RMSE obtained when testing on an individual year and training with the remaining set lies between 12.9 and 15.1 kt. In the eastern North Pacific the DAV-T produces an RMSE of 13.4 kt utilizing all TCs in 2005–11 when compared with the National Hurricane Center best track. The RMSE for individual years lies between 9.4 and 16.9 kt. The complex environment in the western North Pacific led to an extension to the DAV-T that includes two different radii of computation, producing a parametric surface that relates TC axisymmetry to intensity. The overall RMSE is reduced by an average of 1.3 kt in the western North Pacific and 0.8 kt in the eastern North Pacific. These results for the North Pacific are comparable with previously reported results using the DAV for the North Atlantic basin.


2007 ◽  
Vol 20 (12) ◽  
pp. 2721-2744 ◽  
Author(s):  
Peter G. Baines ◽  
Chris K. Folland

Abstract It is shown that a number of important characteristics of the global atmospheric circulation and climate changed in a near-monotonic fashion over the decade, or less, centered on the late 1960s. These changes were largest or commonest in tropical regions, the Southern Hemisphere, and the Atlantic sector of the Northern Hemisphere. Some, such as the decrease in rainfall in the African Sahel, are well known. Others appear to be new, but their combined extent is global and dynamical linkages between them are evident. The list of affected variables includes patterns of SST; tropical rainfall in the African Sahel and Sudan, the Amazon basin, and northeast Brazil; pressure and SST in the tropical North Atlantic and the west and central Pacific; various branches of the southern Hadley circulation and the southern subtropical jet stream; the summer North Atlantic Oscillation; south Greenland temperature; the Southern Hemisphere storm track; and, quite likely, the Antarctic sea ice boundary. These changes are often strongest in the June–August season; changes are also seen in December–February but are generally smaller. In Greenland, annual mean temperature seems to be affected strongly, reflecting similar changes in SST throughout the year in the higher latitudes of the North Atlantic. Possible causes for these coordinated changes are briefly evaluated. The most likely candidates appear to be a likely reduction in the northward oceanic heat flux associated with the North Atlantic thermohaline circulation in the 1950s to 1970s, which was nearly in phase with a rapid increase in anthropogenic aerosol emissions during the 1950s and 1960s, particularly over Europe and North America.


2021 ◽  
Author(s):  
Markus Jochum ◽  
Zanna Chase ◽  
Roman Nutermn ◽  
Joel Pedro ◽  
Sune Rasmussen ◽  
...  

<p>We use a LGM setup of the CESM with marine and terrestrial biogeochemistry. This free-running  set-up (i.e., no freshwater hosing) exhibts Dansgaard-Oeschger events and Antarctic Isotope Maxima with time-lags and amplitudes that are consistent with paleo reconstructions. The CO2 signal associated DO events is also consistent with reconstructions: a 10 ppm/kyr increase during stadials, with the increase continuing some 400 years after Antarctica has started to cool again. An analysis of the modelled air-sea/land carbon fluxes reveals that some 3ppm of the stadial increase are due to shifting rain and temperature patterns that reduce growth of land vegetation. This adjustment is largely concluded after 3 centuries. The remainder of the signal is due to reduced ocean uptake. It turns out that reduced subduction of carbon in the Southern Ocean is mostly compensated by reduced upwelling in the equatorial oceans. Thus, as found in previous studies, much of the extra carbon is due to reduced uptake in the North Atlantic, partly directly due to reduced deep convection, and partly due to a reduced biological productivity because much of the North Atlantic nutrients are supplied by the AMOC. A big surprise is the emergence of the North Pacific as a major contributor to the changes in the air-fluxes of carbon. It is the reorganization of its wind-driven circulation that explains why global net-outgassing of carbon continues long after the interstadial has begun.</p>


2012 ◽  
Vol 3 (2) ◽  
pp. 1347-1389
Author(s):  
R. Séférian ◽  
L. Bopp ◽  
D. Swingedouw ◽  
J. Servonnat

Abstract. Several recent observation-based studies suggest that ocean anthropogenic carbon uptake has slowed down due to the impact of anthropogenic forced climate change. However, it remains unclear if detected changes over the recent time period can really be attributed to anthropogenic climate change or to natural climate variability (internal plus naturally forced variability). One large uncertainty arises from the lack of knowledge on ocean carbon flux natural variability at the decadal time scales. To gain more insights into decadal time scales, we have examined the internal variability of ocean carbon fluxes in a 1000-yr long preindustrial simulation performed with the Earth System Model IPSL-CM5A-LR. Our analysis shows that ocean carbon fluxes exhibit low-frequency oscillations that emerge from their year-to-year variability in the North Atlantic, the North Pacific, and the Southern Ocean. In our model, a 20-yr mode of variability in the North Atlantic air-sea carbon flux is driven by sea surface temperature variability and accounts for ~40% of the interannual regional variance. The North Pacific and the Southern Ocean carbon fluxes are also characterized by decadal to multi-decadal modes of variability (10 to 50 yr) that account for 30–40% of the interannual regional variance. But these modes are driven by the vertical supply of dissolved inorganic carbon through the variability of Ekman-induced upwelling and deep-mixing events. Differences in drivers of regional modes of variability stem from the coupling between ocean dynamics variability and the ocean carbon distribution, which is set by large-scale secular ocean circulation.


Sign in / Sign up

Export Citation Format

Share Document