scholarly journals Extratropical Ocean Warming and Winter Arctic Sea Ice Cover since the 1990s

2015 ◽  
Vol 28 (14) ◽  
pp. 5510-5522 ◽  
Author(s):  
Fei Li ◽  
Huijun Wang ◽  
Yongqi Gao

Abstract Despite the fact that the Arctic Oscillation (AO) has reached a more neutral state and a global-warming hiatus has occurred in winter since the late 1990s, the Arctic sea ice cover (ASIC) still shows a pronounced decrease. This study reveals a close connection (R = 0.5) between the extratropical sea surface temperature (ET-SST) and ASIC in winter from 1994 to 2013. In response to one positive (negative) unit of deviation in the ET-SST pattern, the ASIC decreases (increases) in the Barents–Kara Seas and Hudson Bay (the Baffin Bay and Bering Sea) by 100–400 km2. This relationship might be maintained because of the impact of warming extratropical oceans on the polar vortex. Positive SST anomalies in the midlatitudes of the North Pacific and Atlantic (around 40°N) strengthen the equatorward planetary wave propagation, whereas negative SST anomalies in the high latitudes weaken the upward planetary wave propagation from the lower troposphere to the stratosphere. The former indicates a strengthening of the poleward meridional eddy momentum flux, and the latter implies a weakening of the poleward eddy heat flux, which favors an intensified upper-level polar night jet and a colder polar vortex, implying a stronger-than-normal polar vortex. Consequently, an anomalous cyclone emerges over the eastern Arctic, limiting or encouraging the ASIC by modulating the mean meridional heat flux. A possible reason for the long-term changes in the relationship between the ET-SST and ASIC is also discussed.

2021 ◽  
pp. 1-61
Author(s):  
Svenya Chripko ◽  
Rym Msadek ◽  
Emilia Sanchez-Gomez ◽  
Laurent Terray ◽  
Laurent Bessières ◽  
...  

AbstractThe Northern Hemisphere transient atmospheric response to Arctic sea decline is investigated in autumn and winter, using sensitivity experiments performed with the CNRMCM6-1 high-top climate model. Arctic sea ice albedo is reduced to the ocean value, yielding ice-free conditions during summer and a more moderate sea ice reduction during the following months. A strong ampli_cation of temperatures over the Arctic is induced by sea ice loss, with values reaching up to 25°C near the surface in autumn. Signi_cant surface temperature anomalies are also found over the mid-latitudes, with a warming reaching 1°C over North America and Europe, and a cooling reaching 1°C over central Asia. Using a dynamical adjustment method based on a regional reconstruction of circulation analogs, we show that the warming over North America and Europe can be explained both by changes in the atmospheric circulation and by the advection of warmer oceanic air by the climatological ow. In contrast, we demonstrate that the sea-ice induced cooling over central Asia is solely due to dynamical changes, involving an intensi_cation of the Siberian High and a cyclonic anomaly over the Sea of Okhotsk. In the troposphere, the abrupt Arctic sea ice decline favours a narrowing of the subtropical jet stream and a slight weakening of the lower part of the polar vortex that is explained by a weak enhancement of upward wave activity toward the stratosphere. We further show that reduced Arctic sea ice in our experiments is mainly associated with less severe cold extremes in the mid-latitudes.


2017 ◽  
Vol 30 (5) ◽  
pp. 1537-1552 ◽  
Author(s):  
Joe M. Osborne ◽  
James A. Screen ◽  
Mat Collins

Abstract The Arctic is warming faster than the global average. This disproportionate warming—known as Arctic amplification—has caused significant local changes to the Arctic system and more uncertain remote changes across the Northern Hemisphere midlatitudes. Here, an atmospheric general circulation model (AGCM) is used to test the sensitivity of the atmospheric and surface response to Arctic sea ice loss to the phase of the Atlantic multidecadal oscillation (AMO), which varies on (multi-) decadal time scales. Four experiments are performed, combining low and high sea ice states with global sea surface temperature (SST) anomalies associated with opposite phases of the AMO. A trough–ridge–trough response to wintertime sea ice loss is seen in the Pacific–North American sector in the negative phase of the AMO. The authors propose that this is a consequence of an increased meridional temperature gradient in response to sea ice loss, just south of the climatological maximum, in the midlatitudes of the central North Pacific. This causes a southward shift in the North Pacific storm track, which strengthens the Aleutian low with circulation anomalies propagating into North America. While the climate response to sea ice loss is sensitive to AMO-related SST anomalies in the North Pacific, there is little sensitivity to larger-magnitude SST anomalies in the North Atlantic. With background ocean–atmosphere states persisting for a number of years, there is the potential to improve predictions of the impacts of Arctic sea ice loss on decadal time scales.


2020 ◽  
Author(s):  
Srikanth Toppaladoddi ◽  
Andrew Wells

<p>Arctic sea ice is one of the most sensitive components of the Earth’s climate system. The underlying ocean plays an important role in the evolution of the ice cover through its heat flux at the ice-ocean interface which moderates ice growth and melt. Despite its importance, the spatio-temporal variations of this heat flux are not well understood. In this work, we combine direct numerical simulations of turbulent convection over fractal surfaces and analysis of time-series data from the Surface Heat Budget of the Arctic Ocean (SHEBA) program using Multifractal Detrended Fluctuation Analysis (MFDFA) to understand the nature of fluctuations in this heat flux. We identify key physical processes associated with the observed Hurst exponents calculated by the MFDFA, and how these evolve over time. We also discuss ongoing work on constructing simple stochastic models of the ocean heat flux to the ice, and potential use as a parameterisation.</p>


2009 ◽  
Vol 26 (4) ◽  
pp. 838-845 ◽  
Author(s):  
Zuohao Cao ◽  
Jianmin Ma

Abstract In this study, a variational approach was employed to compute surface sensible heat flux over the Arctic sea ice. Because the variational approach is able to take into account information from the Monin–Obukhov similarity theory (MOST) as well as the observed meteorological information, it is expected to improve the pure MOST-based approach in computation of sensible heat flux. Verifications using the direct eddy-correlation measurements over the Arctic sea ice during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment period of 1997/98 show that the variational method yields good agreement between the computed and the measured sensible heat fluxes. The variational method is also shown to be more accurate than the traditional MOST method in the computation of sensible heat flux over the Arctic sea ice.


2019 ◽  
Vol 124 (2) ◽  
pp. 858-869 ◽  
Author(s):  
Kazuhira Hoshi ◽  
Jinro Ukita ◽  
Meiji Honda ◽  
Tetsu Nakamura ◽  
Koji Yamazaki ◽  
...  

2014 ◽  
Vol 27 (17) ◽  
pp. 6497-6518 ◽  
Author(s):  
Steven B. Feldstein ◽  
Sukyoung Lee

Abstract This study uses cluster analysis to investigate the interdecadal poleward shift of the subtropical and eddy-driven jets and its relationship to intraseasonal teleconnections. For this purpose, self-organizing map (SOM) analysis is applied to the ECMWF Interim Re-Analysis (ERA-Interim) zonal-mean zonal wind. The resulting SOM patterns have time scales of 4.8–5.7 days and undergo notable interdecadal trends in their frequency of occurrence. The sum of these trends closely resembles the observed interdecadal trend of the subtropical and eddy-driven jets, indicating that much of the interdecadal climate forcing is manifested through changes in the frequency of intraseasonal teleconnection patterns. Two classes of jet cluster patterns are identified. The first class of SOM pattern is preceded by anomalies in convection over the warm pool followed by changes in the poleward wave activity flux. The second class of patterns is preceded by sea ice and stratospheric polar vortex anomalies; when the Arctic sea ice area is reduced, the subsequent planetary wave anomalies destructively interfere with the climatological stationary waves. This is followed by a decrease in the vertical wave activity flux and a strengthening of the stratospheric polar vortex. An increase in sea ice area leads to the opposite chain of events. Analysis suggests that the positive trend in the Arctic Oscillation (AO) up until the early 1990s might be attributed to increased warm pool tropical convection, while the subsequent reversal in its trend may be due to the influence of tropical convection being overshadowed by the accelerated loss of Arctic sea ice.


2020 ◽  
Author(s):  
Erik W. Kolstad ◽  
James A. Screen ◽  
Marius Årthun

<p>Statistical relationships between climate variables are good source of seasonal predictability, but can we trust them to be valid in the future? In two recent papers, we investigated the stationarity of some well-known lagged relationships. The predictors were Arctic sea surface temperatures (SSTs) and sea ice cover during autumn, and the predictands were the North Atlantic Oscillation (NAO) and European temperature in winter. The reason for studying these variables was that in recent decades, reduced sea ice and above-normal SSTs in autumn have often preceded negative NAO conditions and cold temperatures in Northern Europe in the following winter. When we looked further back in time, however, we found that the relationships between SST/ice and NAO/temperatures have been highly changeable and sometimes even the complete opposite to that seen recently. One key finding was that, according to two 20th century reanalyses, the strength of the negative lagged correlation between Barents Sea SST anomalies in fall and European temperature anomalies in winter after 1979 is unprecedented since 1900. An analysis of hundreds of simulations from multiple climate models confirms that the relationships vary with time, just due to natural climate variability. This led us to question the causality and/or robustness of the links between the variables and to caution against indiscriminately predicting wintertime weather based on Arctic sea ice and SST anomalies.</p>


2014 ◽  
Vol 8 (3) ◽  
pp. 2923-2956
Author(s):  
S. Arndt ◽  
M. Nicolaus

Abstract. Arctic sea ice has not only decreased considerably during the last decades, but also changed its physical properties towards a thinner and more seasonal cover. These changes strongly impact the energy budget and might affect the ice-associated ecosystem of the Arctic. But until now, it is not possible to quantify shortwave energy fluxes through sea ice sufficiently well over large regions and during different seasons. Here, we present a new parameterization of light transmittance through sea ice for all seasons as a function of variable sea ice properties. The annual maximum solar heat flux of 30 × 105 J m−2 occurs in June, then also matching the under ice ocean heat flux. Furthermore, our results suggest that 96% of the total annual solar heat input occurs from May to August, during four months only. Applying the new parameterization on remote sensing and reanalysis data from 1979 to 2011, we find an increase in light transmission of 1.5% a−1 for all regions. Sensitivity studies reveal that the results strongly depend on the timing of melt onset and the correct classification of ice types. Hence, these parameters are of great importance for quantifying under-ice radiation fluxes and the uncertainty of this parameterization. Assuming a two weeks earlier melt onset, the annual budget increases by 20%. Continuing the observed transition from Arctic multi- to first year sea ice could increase light transmittance by another 18%. Furthermore, the increase in light transmission directly contributes to an increase in internal and bottom melt of sea ice, resulting in a positive transmittance-melt feedback process.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


Sign in / Sign up

Export Citation Format

Share Document