scholarly journals Seasonal cycle of solar energy fluxes through Arctic sea ice

2014 ◽  
Vol 8 (3) ◽  
pp. 2923-2956
Author(s):  
S. Arndt ◽  
M. Nicolaus

Abstract. Arctic sea ice has not only decreased considerably during the last decades, but also changed its physical properties towards a thinner and more seasonal cover. These changes strongly impact the energy budget and might affect the ice-associated ecosystem of the Arctic. But until now, it is not possible to quantify shortwave energy fluxes through sea ice sufficiently well over large regions and during different seasons. Here, we present a new parameterization of light transmittance through sea ice for all seasons as a function of variable sea ice properties. The annual maximum solar heat flux of 30 × 105 J m−2 occurs in June, then also matching the under ice ocean heat flux. Furthermore, our results suggest that 96% of the total annual solar heat input occurs from May to August, during four months only. Applying the new parameterization on remote sensing and reanalysis data from 1979 to 2011, we find an increase in light transmission of 1.5% a−1 for all regions. Sensitivity studies reveal that the results strongly depend on the timing of melt onset and the correct classification of ice types. Hence, these parameters are of great importance for quantifying under-ice radiation fluxes and the uncertainty of this parameterization. Assuming a two weeks earlier melt onset, the annual budget increases by 20%. Continuing the observed transition from Arctic multi- to first year sea ice could increase light transmittance by another 18%. Furthermore, the increase in light transmission directly contributes to an increase in internal and bottom melt of sea ice, resulting in a positive transmittance-melt feedback process.

2014 ◽  
Vol 8 (6) ◽  
pp. 2219-2233 ◽  
Author(s):  
S. Arndt ◽  
M. Nicolaus

Abstract. Arctic sea ice has not only decreased in volume during the last decades, but has also changed in its physical properties towards a thinner and more seasonal ice cover. These changes strongly impact the energy budget, and might affect the ice-associated ecosystems. In this study, we quantify solar shortwave fluxes through sea ice for the entire Arctic during all seasons. To focus on sea-ice-related processes, we exclude fluxes through open water, scaling linearly with sea ice concentration. We present a new parameterization of light transmittance through sea ice for all seasons as a function of variable sea ice properties. The maximum monthly mean solar heat flux under the ice of 30 × 105 Jm−2 occurs in June, enough heat to melt 0.3 m of sea ice. Furthermore, our results suggest that 96% of the annual solar heat input through sea ice occurs during only a 4-month period from May to August. Applying the new parameterization to remote sensing and reanalysis data from 1979 to 2011, we find an increase in transmitted light of 1.5% yr−1 for all regions. This corresponds to an increase in potential sea ice bottom melt of 63% over the 33-year study period. Sensitivity studies reveal that the results depend strongly on the timing of melt onset and the correct classification of ice types. Assuming 2 weeks earlier melt onset, the annual transmitted solar radiation to the upper ocean increases by 20%. Continuing the observed transition from a mixed multi-year/first-year sea ice cover to a seasonal ice cover results in an increase in light transmittance by an additional 18%.


2020 ◽  
Author(s):  
Dongxiao Zhang ◽  
Chidong Zhang ◽  
Jessica Cross ◽  
Calvin Mordy ◽  
Edward Cokelet ◽  
...  

<p>The Arctic has been rapidly changing over the last decade, with more frequent unusually early ice retreats in late spring and summer. Vast Arctic areas that were usually covered by sea ice are now exposed to the atmosphere because of earlier ice retreat and later arrival. Assessment of consequential changes in the energy cycle of the Arctic and their potential feedback to the variability of Arctic sea ice and marine ecosystems critically depends on the accuracy of surface flux estimates. In the Pacific sector of the Arctic, earlier ice retreat generally follows the warm Pacific water inflow into the Arctic through the Bering and Chukchi Seas. Due to ice coverage and irregularity of seasonal ice retreats, air-sea flux measurements following the ice retreats has been difficult to plan and execute. A recent technology development is the Unmanned Surface Vehicles (USVs): The long-range USV saildrones are powered by green energy with wind for propulsion and solar energy for instrumentation and vehicle control. NOAA/PMEL and University of Washington scientists have made surface measurements of the ocean and atmosphere in the Pacific Arctic using saildrones for the past several years. In 2019, for the 1<sup>st</sup> time a fleet of six saildrones capable of measuring both turbulent and radiative heat fluxes, wind stress, air-sea CO<sub>2</sub> flux and upper ocean currents was deployed to follow the ice retreat from May to October, with five of the USVs into the Chukchi and Beaufort Seas while one staying in the Bering Sea. These in situ measurements provide rare opportunities of estimating air-sea energy fluxes during a period of rapid reduction in Arctic sea ice in different scenarios: open water after ice melt, free-floating ice bands, and marginal ice zones. In this study, Arctic air-sea heat and momentum fluxes measured by the saildrones are compared to gridded flux products based on satellite data and numerical models to investigate the circumstances under which they agree and differ, and the main sources of their discrepancies. The results will quantify the uncertainty margins in the gridded flux products and provide insights needed to improve their accuracy. We will also discuss the feasibility of using USVs in sustained Arctic observing system to collect benchmark datasets of the changing surface energy fluxes due to rapid sea ice reduction and provide real time data for improved weather and ocean forecasts.  </p>


2018 ◽  
Vol 31 (6) ◽  
pp. 2267-2282 ◽  
Author(s):  
Xiaodan Chen ◽  
Dehai Luo ◽  
Steven B. Feldstein ◽  
Sukyoung Lee

Using daily reanalysis data from 1979 to 2015, this paper examines the impact of winter Ural blocking (UB) on winter Arctic sea ice concentration (SIC) change over the Barents and Kara Seas (BKS). A case study of the sea ice variability in the BKS in the 2015/16 and 2016/17 winters is first presented to establish a link between the BKS sea ice variability and UB events. Then the UB events are classified into quasi-stationary (QUB), westward-shifting (WUB), and eastward-shifting (EUB) UB types. It is found that the frequency of the QUB events increases significantly during 1999–2015, whereas the WUB events show a decreasing frequency trend during 1979–2015. Moreover, it is shown that the variation of the BKS-SIC is related to downward infrared radiation (IR) and surface sensible and latent heat flux changes due to different zonal movements of the UB. Calculations show that the downward IR is the main driver of the BKS-SIC decline for QUB events, while the downward IR and surface sensible heat flux make comparable contributions to the BKS-SIC variation for WUB and EUB events. The SIC decline peak lags the QUB and EUB peaks by about 3 days, though QUB and EUB require lesser prior SIC. The QUB gives rise to the largest SIC decline likely because of its longer persistence, whereas the BKS-SIC decline is relatively weak for the EUB. The WUB is found to cause a SIC decline during its growth phase and an increase during its decay phase. Thus, the zonal movement of the UB has an important impact on the SIC variability in BKS.


2020 ◽  
Author(s):  
Srikanth Toppaladoddi ◽  
Andrew Wells

<p>Arctic sea ice is one of the most sensitive components of the Earth’s climate system. The underlying ocean plays an important role in the evolution of the ice cover through its heat flux at the ice-ocean interface which moderates ice growth and melt. Despite its importance, the spatio-temporal variations of this heat flux are not well understood. In this work, we combine direct numerical simulations of turbulent convection over fractal surfaces and analysis of time-series data from the Surface Heat Budget of the Arctic Ocean (SHEBA) program using Multifractal Detrended Fluctuation Analysis (MFDFA) to understand the nature of fluctuations in this heat flux. We identify key physical processes associated with the observed Hurst exponents calculated by the MFDFA, and how these evolve over time. We also discuss ongoing work on constructing simple stochastic models of the ocean heat flux to the ice, and potential use as a parameterisation.</p>


2009 ◽  
Vol 26 (4) ◽  
pp. 838-845 ◽  
Author(s):  
Zuohao Cao ◽  
Jianmin Ma

Abstract In this study, a variational approach was employed to compute surface sensible heat flux over the Arctic sea ice. Because the variational approach is able to take into account information from the Monin–Obukhov similarity theory (MOST) as well as the observed meteorological information, it is expected to improve the pure MOST-based approach in computation of sensible heat flux. Verifications using the direct eddy-correlation measurements over the Arctic sea ice during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment period of 1997/98 show that the variational method yields good agreement between the computed and the measured sensible heat fluxes. The variational method is also shown to be more accurate than the traditional MOST method in the computation of sensible heat flux over the Arctic sea ice.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 361
Author(s):  
Su-Bong Lee ◽  
Baek-Min Kim ◽  
Jinro Ukita ◽  
Joong-Bae Ahn

Reanalysis data are known to have relatively large uncertainties in the polar region than at lower latitudes. In this study, we used a single sea-ice model (Los Alamos’ CICE5) and three sets of reanalysis data to quantify the sensitivities of simulated Arctic sea ice area and volume to perturbed atmospheric forcings. The simulated sea ice area and thickness thus volume were clearly sensitive to the selection of atmospheric reanalysis data. Among the forcing variables, changes in radiative and sensible/latent heat fluxes caused significant amounts of sensitivities. Differences in sea-ice concentration and thickness were primarily caused by differences in downward shortwave and longwave radiations. 2-m air temperature also has a significant influence on year-to-year variability of the sea ice volume. Differences in precipitation affected the sea ice volume by causing changes in the insulation effect of snow-cover on sea ice. The diversity of sea ice extent and thickness responses due to uncertainties in atmospheric variables highlights the need to carefully evaluate reanalysis data over the Arctic region.


2021 ◽  
Vol 496 (1) ◽  
pp. 66-71
Author(s):  
I. I. Mokhov ◽  
M. R. Parfenova

Abstract Quantitative estimates of the relationship between interannual variations in the extent of Antarctic and Arctic sea ice and changes in the surface air temperature in the Northern and Southern hemispheres are obtained using satellite, ground-based, and reanalysis data for the past four decades (1980–2019). It is shown that the previously noted general increase in the extent of Antarctic sea ice observed until recent years from satellite data (available only since the late 1970s) over the background global warming and a rapid decrease in the extent of Arctic sea ice is associated with a regional decrease in the surface temperature at Antarctic latitudes from the end of the 1970s. This is a result of regional manifestation of natural climate variations with periods of up to several decades against the background of global secular warming with a relatively weak temperature trend over the ocean in the Southern Hemisphere. Since 2016, a sharp decrease in the extent of Antarctic sea ice in the Southern Ocean has been observed. The results of the correlation and cross-wavelet analysis indicate significant coherence and negative correlation with the surface temperature of the extent of sea ice in recent decades, not only in the Arctic, but also in the Antarctic.


2011 ◽  
Vol 52 (57) ◽  
pp. 192-196 ◽  
Author(s):  
D.K. Perovich ◽  
K.F. Jones ◽  
B. Light ◽  
H. Eicken ◽  
T. Markus ◽  
...  

AbstractThe summer extent of the Arctic sea-ice cover has decreased in recent decades and there have been alterations in the timing and duration of the summer melt season. These changes in ice conditions have affected the partitioning of solar radiation in the Arctic atmosphere–ice–ocean system. the impact of sea-ice changes on solar partitioning is examined on a pan-Arctic scale using a 25 km × 25 km Equal-Area Scalable Earth Grid for the years 1979–2007. Daily values of incident solar irradiance are obtained from NCEP reanalysis products adjusted by ERA-40, and ice concentrations are determined from passive microwave satellite data. the albedo of the ice is parameterized by a five-stage process that includes dry snow, melting snow, melt pond formation, melt pond evolution, and freeze-up. the timing of these stages is governed by the onset dates of summer melt and fall freeze-up, which are determined from satellite observations. Trends of solar heat input to the ice were mixed, with increases due to longer melt seasons and decreases due to reduced ice concentration. Results indicate a general trend of increasing solar heat input to the Arctic ice–ocean system due to declines in albedo induced by decreases in ice concentration and longer melt seasons. the evolution of sea-ice albedo, and hence the total solar heating of the ice–ocean system, is more sensitive to the date of melt onset than the date of fall freeze-up. the largest increases in total annual solar heat input from 1979 to 2007, averaging as much as 4%a–1, occurred in the Chukchi Sea region. the contribution of solar heat to the ocean is increasing faster than the contribution to the ice due to the loss of sea ice.


2021 ◽  
Author(s):  
Maria Parfenova ◽  
Igor I. Mokhov

<p>Quantitative estimates of the relationship between the interannual variability of Antarctic and Arctic sea ice and changes in the surface temperature in the Northern and Southern Hemispheres using satellitedata, observational data and reanalysis data for the last four decades (1980-2019) are obtained. The previously noted general increase in the Antarctic sea ice extent (up to 2016) (according to satellite data available only since the late 1970s), happening simultaneously with global warming and rapid decrease in the Arctic sea ice extent, is associated with the regional manifestation of natural climate fluctuations with periods of up to several decades. The results of correlation and crosswavelet analysis indicate significant coherence and negative correlation of hemispheric surface temperature with not only Arctic,but also Antarctic sea ice extent in recent decades.</p><p>Seasonal and regional peculiarities of snow cover sensitivity to temperature regime changes in the Northern Hemisphere are noted with an assessment of changes in recent decades. Peculiarities of snow cover variability in Eurasia and North America are presented. In particular, the peculiarities of changes in snow cover during the autumn seasons are noted.</p>


2015 ◽  
Vol 28 (14) ◽  
pp. 5510-5522 ◽  
Author(s):  
Fei Li ◽  
Huijun Wang ◽  
Yongqi Gao

Abstract Despite the fact that the Arctic Oscillation (AO) has reached a more neutral state and a global-warming hiatus has occurred in winter since the late 1990s, the Arctic sea ice cover (ASIC) still shows a pronounced decrease. This study reveals a close connection (R = 0.5) between the extratropical sea surface temperature (ET-SST) and ASIC in winter from 1994 to 2013. In response to one positive (negative) unit of deviation in the ET-SST pattern, the ASIC decreases (increases) in the Barents–Kara Seas and Hudson Bay (the Baffin Bay and Bering Sea) by 100–400 km2. This relationship might be maintained because of the impact of warming extratropical oceans on the polar vortex. Positive SST anomalies in the midlatitudes of the North Pacific and Atlantic (around 40°N) strengthen the equatorward planetary wave propagation, whereas negative SST anomalies in the high latitudes weaken the upward planetary wave propagation from the lower troposphere to the stratosphere. The former indicates a strengthening of the poleward meridional eddy momentum flux, and the latter implies a weakening of the poleward eddy heat flux, which favors an intensified upper-level polar night jet and a colder polar vortex, implying a stronger-than-normal polar vortex. Consequently, an anomalous cyclone emerges over the eastern Arctic, limiting or encouraging the ASIC by modulating the mean meridional heat flux. A possible reason for the long-term changes in the relationship between the ET-SST and ASIC is also discussed.


Sign in / Sign up

Export Citation Format

Share Document